1-7

Let $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ be a linearly independent set of vectors in R^{n}, and
86 let \boldsymbol{v} be a vector in R^{n} such that $\boldsymbol{v}=c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{k} \boldsymbol{u}_{k}$ for some scalars $c_{1}, c_{2}, \ldots, c_{k}$ with $c_{1} \neq 0$. Prove that $\left\{\boldsymbol{v}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is linear independent.

Let \boldsymbol{u} and \boldsymbol{v} be distinct vectors in R^{n}. Prove that the set $\{\boldsymbol{u}, \boldsymbol{v}\}$ is linearly independent if and only if the set $\{\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{u}-\boldsymbol{v}\}$ is linearly independent.

Prove that if $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is a linearly independents subset of R^{n}
89 and $c_{1}, c_{2}, \ldots, c_{k}$ are nonzero scalars, then $\left\{c_{1} \boldsymbol{u}_{1}, c_{2} \boldsymbol{u}_{2}, \ldots, c_{k} \boldsymbol{u}_{k}\right\}$ is also linearly independent.

$$
\begin{aligned}
& C_{1} u_{1}+c_{2} u_{2}+\cdots+c_{k} u_{k}=0 \Rightarrow c_{1}=C_{2}=\cdots L_{k}=0{ }^{2} \\
& a_{1}\left(c_{1} u_{1}\right)+a_{2}\left(c_{2} u_{2}\right)+\ldots a_{k}\left(c_{k} u_{k}\right)=0 \\
& \Rightarrow\left(a_{1} c_{1}\right) u_{1}+\left(a_{2} c_{2}\right) u_{2}+\cdots+\left(a_{k}\left(c_{k}\right) u_{k}=0\right. \\
& \Rightarrow \quad \begin{array}{c}
a_{1} c_{1}=a_{2} c_{2}=\cdots \\
11 H \\
0<0 \\
0
\end{array} \\
& \Rightarrow a_{1}=a_{2}=\ldots=a_{k}=0 \quad \text { ind. }
\end{aligned}
$$

Let $S=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ be a nonempty set of vectors from R^{n} ．Prove
93 that if S is linearly independent，then every vector in Span S can be written as $c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{k}$ 龁 for unique scalars $c_{1}, c_{2}, \ldots, c_{k}$ ．

$$
\begin{aligned}
& V=c_{1} u_{1}+c_{2} u_{2}+\cdots c_{k} u_{k} \quad c_{1} \cdots c_{k} \\
& V=b_{1} u_{1}+b_{2} u_{2}+\cdots b_{2} u_{k} \quad b_{1} \cdots b_{k} \\
& \Rightarrow 0=\left(c_{1}-b_{1}\right) u_{1}+\left(c_{2}-b_{2}\right) u_{2}+\cdots+\left(c_{k}-b_{k}\right) u_{k} \\
& \Rightarrow c_{1}-b_{1}=c_{2}-b_{2}=\cdots=c_{k}-b_{k}=0 \\
& \Rightarrow c_{1}=b_{1}, c_{2}=b_{2} \cdots \cdots c_{k}=b_{k} \text { 予盾 }
\end{aligned}
$$ that if S is linearly independent, then every vector in Span S can be $\|$ written as $c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{k} \boldsymbol{u}_{k}$ for unique scalars $c_{1}, c_{2}, \ldots, c_{k}$. State and prove the converse of Exercise 93.

Let $S=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ be a nonempty subset of R^{n} and Abbe an $m \times n$ matrix. Prove that if S is linearly dependent, and $S^{\prime}=$ $\left\{A \boldsymbol{u}_{1}, A \boldsymbol{u}_{2}, \ldots, A \boldsymbol{u}_{k}\right\}$ contains k distinct vectors, then S^{\prime} is linearly dependent.

Let $S=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ be a nonempty subset of R^{n} and A be an $m \times n$ matrix. Prove that if S is linearly and $S^{\prime}=$ $\left\{A \boldsymbol{u}_{1}, A \boldsymbol{u}_{2}, \ldots, A \boldsymbol{u}_{k}\right\}$ contains k distinct vectors, then S^{\prime} is linearly dépent. \{n cl. X
Give an example to show that the preceding exercise is false if linearly dependent is changed to linearly independent.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& 2 \times 3 \quad A=I
\end{aligned}
$$

$$
\begin{array}{ll}
A u_{1} & A u_{2} \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]} & {\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{array}
$$

$$
d e \leftrightarrow A \leftarrow d e
$$

