1-7

Let $\{u_1, u_2, ..., u_k\}$ be a linearly independent set of vectors in \mathbb{R}^n , and let v be a vector in \mathbb{R}^n such that $v = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k$ for some scalars $c_1, c_2, ..., c_k$ with $c_1 \neq 0$. Prove that $\{v, u_2, ..., u_k\}$ is linear independent.

Let u and v be distinct vectors in \mathbb{R}^n . Prove that the set $\{u, v\}$ is linearly independent if and only if the set $\{u + v, u - v\}$ is linearly independent.

Prove that if
$$\{u_1, u_2, ..., u_k\}$$
 is a linearly independent subset of \mathbb{R}^n
and $c_1, c_2, ..., c_k$ are nonzero scalars, then $\{c_1 u_1, c_2 u_2, ..., c_k u_k\}$ is
also linearly independent.
$$C_1 \mathcal{U}_1 + (\mathcal{U}_2 \mathcal{U}_2 + \cdots + \mathcal{L}_k \mathcal{U}_k = 0 \implies \mathcal{L}_1 = (\mathcal{U}_2 = \cdots + \mathcal{L}_k = 0)$$
$$\mathcal{O}_1 (c_1 \mathcal{U}_1) + \mathcal{O}_2 (c_2 \mathcal{U}_2) + \cdots + \mathcal{O}_k (c_k \mathcal{U}_k) = 0$$
$$\implies (\mathcal{A}, c_1) \mathcal{U}_1 + (\mathcal{O}_2 c_2) \mathcal{U}_2 + \cdots + (\mathcal{O}_k c_k) \mathcal{U}_k = 0$$
$$\implies \mathcal{O}_1 C_1 = \mathcal{O}_2 (\mathcal{O}_2 = \cdots = \mathcal{O}_k (\mathcal{U}_k = 0)$$
$$\implies \mathcal{O}_1 = \mathcal{O}_2 = \cdots = \mathcal{O}_k (\mathcal{U}_k = 0)$$

Let $S = \{u_1, u_2, ..., u_k\}$ be a nonempty set of vectors from \mathbb{R}^n . Prove that if S is linearly independent, then every vector in *Span S* can be written as $c_1u_1 + c_2u_2 + \cdots + c_ku_k$ for *unique* scalars $c_1, c_2, ..., c_k$.

$$V = C_1 M_1 + (2M_2 + \cdots + C_k M_k) \qquad C_1 - C_k M_k \qquad C_1 - C_k M_k \qquad b_1 - b_k \end{pmatrix} c_1 \text{ flevent}$$

$$\Rightarrow O = (C_1 - b_1) M_1 + (C_2 - b_2) M_2 + \cdots + (C_k - b_k) M_k$$

$$\Rightarrow C_1 - b_1 = C_2 - b_2 = \cdots = C_k - b_k = 0$$

今 Ci=h, Ci=hz:~~ Ck=hk 矛盾

93

Let $S = \{u_1, u_2, ..., u_k\}$ be a nonempty set of vectors from \mathbb{R}^n . Prove that if S is linearly independent, then every vector in Span S can be written as $c_1u_1 + c_2u_2 + \cdots + c_ku_k$ for *unique* scalars $c_1, c_2, ..., c_k$. State and prove the converse of Exercise 93.

Let $S = \{u_1, u_2, ..., u_k\}$ be a nonempty subset of R^n and A be an $m \times n$ matrix. Prove that if S is linearly dependent, and $S' = \{Au_1, Au_2, ..., Au_k\}$ contains k distinct vectors, then S' is linearly dependent.

Let $S = \{u_1, u_2, \dots, u_k\}$ be a nonempty subset of \mathbb{R}^n and A be an $m \times n$ matrix. Prove that if S is linearly dependent, and S' =96 $\{Au_1, Au_2, \dots, Au_k\}$ contains k distinct vectors, then S' is linearly dependent. Give an example to show that the preceding exercise is false if *linearly dependent* is changed to *linearly independent*. $A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ dep_