Invertible

Summary

- Let A be an $n \times n$ matrix. A is invertible if and only if
- The columns of A span R^{n}
- For every b in R^{n}, the system $A x=b$ is consistent
- The rank of A is n
- The columns of A are linear independent
- The only solution to $A x=0$ is the zero vector
- The nullity of A is zero
- The reduced row echelon form of A is I_{n}
- A is a product of elementary matrices
- There exists an $n \times n$ matrix B such that $B A=I_{n}$
- There exists an $n \times n$ matrix C such that $A C=I_{n}$

Review－Terminology

－Given a function f

What actually come out of function f

Range（值域）

Domain（定義域）
What can go into function f

Co－domain（對應域）
What may possible come out of function f

Review－Terminology

- one－to－one（一對一）
- Onto（映成）

Co－domain＝range

Review: One-to-one

2×3

- A function f is one-to-one

If co-domain is "smaller" than the domain, f cannot be one-to-one.

If a matrix A is 矮胖, it cannot be one-to-one.

The reverse is not true.
If a matrix A is one-toone, its columns are independent.

Review: Onto

- A function f is onto

Co-domain = range

If co-domain is "larger" than the domain, f cannot be onto.

If a matrix A is 高瘦, it cannot be onto.

The reverse is not true.
If a matrix A is onto, $\operatorname{rank} A=$ no. of rows.
$f(x)=b$ always have solution

Invertible

－A is called invertible if there is a matrix B such that $A B=I$ and $B A=I\left(B=A^{-1}\right)$

A must be one－to－one

A must be onto
（不然 A^{-1} 的 input 就會有限制）

One－to－one and onto

An invertible matrix A is always square．

－A function f is one－to－one and onto

The domain and co－ domain must have＂the same size＂．
The corresponding matrix A is square．

One－to－one
 Onto

在 Square 的前提下，要就都成立，要就都不成立

Summary

- Let A be an $n \times n$ matrix. A is invertible if and only if
- The columns of A span R^{n}
- For every b in R^{n}, the system $A x=b$ is consistent
- The rank of A is n
- The columns of A are linear independent
- The only solution to $A x=0$ is the zero vector
- The nullity of A is zero
- The reduced row echelon form of A is I_{n}
- A is a product of elementary matrices
- There exists an $n \times n$ matrix B such that $B A=I_{n}$
- There exists an $n \times n$ matrix C such that $A C=I_{n}$

