RREF v.s. Span

Consistent or not

Given Ax=b, if the reduced row echelon form of [A b] is

Given Ax=b, if the reduced row echelon form of [A b] is

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 0$$

inconsistent

b is NOT in the span of the columns of A

Consistent or not

Ax =b is consistent for every b
$$A: m \times n$$

II

Every b is in the span of the columns of $A = [a_1 \cdots a_n]$

II

Every b belongs to $Span\{a_1, \cdots, a_n\}$

II

Span $\{a_1, \cdots, a_n\} = R^m$

II

RREF of [A b] cannot have a row whose only non-zero entry is at the last column

II

RREF of A cannot have zero row 沒有任何破綻

II

Rank A = no. of rows

這個發現已經提過,現在只是從 span 的觀點再說一次

Rank

Matrix A is *full rank* if Rank A = min(m,n)

Matrix A is *rank deficient* if Rank A < min(m,n)

• Rank $A \le \min(m, n)$

Given a mxn matrix A:

- Because "the columns of A are independent" is equivalent to "rank A = n"
 - If m < n, the columns of A is dependent.

(۲*٦		[*]		۲*۱		[*]	n
}	*	,	*	,	*	,	-*- * _*_	{
(-*-		-*-		-*-		-*-	D

3 X 4 Rank A ≤ 3

A matrix set has 4 vectors belonging to R³ is dependent

In R^m, you cannot find more than m vectors that are independent.

這個發現已經提過,現在只是從 span 的觀點再說一次

m independent vectors can span R^m Example Consider R² C Does $S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$ generate \mathcal{R}^3 ? yes independent

