Basis




Basis

* Let V be a nonzero subspace of R". A basis B for V is
a linearly independent generation set of V.

{e, e, ..., e}is a basis for R".
1.{e,, e,, ..., e,}is independent

2.{e,, e,, ..., e} generates R".

{[é] , [(1)]} is a basis for R?
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Basis

* The pivot columns of a matrix form a basis for its
columns space.
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Property

* (a) Sis contained in Span S Basis is always in
its subspace

* (b) If a finite set S’ is contained in Span S, then Span S’ is
also contained in Span S

_ Span S
* Because Span S is a subspace
Span S’

* (c) For any vector z, Span S = Span SU{z} if and only if z
belongs to the Span S




Theorem

* 1. A basis is the smallest generation set.

e 2. A basis is the largest independent vector set in
the subspace.

* 3. Any two bases for a subspace contain the same
number of vectors.

e The number of vectors in a basis for a nonzero
subspace V is called dimension of V (dim V).



Every basis of R"”

* The number of vectors in a basis for a subspace V is
called the dimension of V, and is denoted dim V

* The dimension of zero subspace is 0

A A

dim R’ =2 dim R3=3




Example
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More from Theorems

Any two bases for a subspace contain the same number

of vectors.

R™ have a basis {e,, e,, ..., e,,} All bases have m vectors

dimR”" =m

A basis is the smallest generation set.

A vector set generates R™ must contain at least m vectors.
Because a basis is the smallest generation set
Any other generation set has at least m vectors.

A basis is the largest independent set in the subspace.

Any independent vector set in R” contain at most m vectors.



Independent

All columns are
independent

Every columnis a
pivot column

Every columnin
RREF(A) is standard
vector.
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Matrix A is rank deficient
* Given a mxn matrix A: if Rank A < min(m,n)

* Rank A < min(m, n)

* Because “the columns of A are independent” is
equivalent to “rank A=n"

* If m < n, the columns of A is dependent.

oo LHEREED

3X4 A matrix set has 4 vectors
RankA<3 belonging to R%is dependent

Matrix A is full rank
Rank if Rank A = min(m,n)

In R™, you cannot find more than m vectors that are independent.




Consistent or not

A -mXn

Span{@1, ** ,Qn} =R™ = RankA =no. of rows

4

m independent vectors can

span R™

More than m vectors in R™
must be dependent.




Theorem 1

A basis is the smallest generation set.

If there is a generation set S for subspace V,

The size of basis for V is smaller than or equal to S.

Reduction Theorem

There is a basis containing in any generation
set S.

S can be reduced to a basis for V by removing
some vectors.



Theorem 1 — Reduction Theorem

FRER/ generation set L\ EFHE —1E basis

S can be reduced to a basis for V by removing some
vectors.

Suppose S ={uy, u,, ..., u,} is a generation set of
subspace V

SubspaceV =Span$§ LetA=[u; u, - u.l.
= Col A

» The basis of Col A is
the‘pivot columns of A‘ Subset of S




Theorem 1 — Reduction Theorem
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Theorem 2

A basis is the largest independent set in the subspace.

If the size of basis is k, then you cannot find more than k
independent vectors in the subspace.

Extension Theorem

Given an independent vector set S in the space

S can be extended to a basis by adding more vectors



Theorem 2 — Extension Theorem

Independent set:

HAZ—1E basis Fhz=lE 1A —1E basis

There is a subspace V
Given a independent vector set S (elements of S are in V)
{If Span S =V, then S is a basis

If Span S #V, find v, inV, but notin Span S

S =S U {v,}isstill an independent set

{If Span S =V, then S is a basis
If Span S #V, find v, inV, but not in Span S

S =S U {v,}is still an independent set V

------ You will find the basis in the end.



Textbook P245

Theorem 3

* Any two bases of a subspace V contain the same
number of vectors

Suppose {uy, u,, ..., ut and {wy, w,, ..., w,} are two bases of V.
LetA=[u;u;, ~ujJand B=[w;w, - w,.

Since {uy, u,, ..., utspans V, dg¢; € R¥ s.t. Ac,=w;foralli

= Alc; ¢, ¢ )] =[w;w, -w,] =AC=8B

Now Cx =0 forsomex € R°®° = ACx=Bx=0

B is independent vector set = x=0 = ¢, ¢, - ¢,are independent
ceR' =p<k

Reversing the roles of the two bases one has k<p = p = k.



Theorem 4.9 (P258)

* If Vand W are subspaces of R" with V contained in
W, thendimV <dimW

e IfdimV=dmW, V=W

* Proof:
By is a basisof V,Vin W, B, in W

» B, is an independent set in W
By extension theorem, B, is in the basis of W » dimV <dim W

If dim V =dim W =k
By is a linear independent set in W, with k elements

» It is also the span of W



R3 is the only 3-dim subspace of itself

L

W

The 2-dim subspace
with basis {u,v}

The O-dim
subspace

with basis



Concluding Remarks

* 1. A basis is the smallest generation set.

e 2. A basis is the largest independent vector set in
the subspace.

* 3. Any two bases for a subspace contain the same
number of vectors.

e The number of vectors in a basis for a nonzero
subspace V is called dimension of V (dim V).



Concluding Remarks

Same size

Independent

Generation vector set

set
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