Basis
Basis

• Let V be a nonzero subspace of \mathbb{R}^n. A basis B for V is a linearly independent generation set of V.

$\{e_1, e_2, \ldots, e_n\}$ is a basis for \mathbb{R}^n.

1. $\{e_1, e_2, \ldots, e_n\}$ is independent
2. $\{e_1, e_2, \ldots, e_n\}$ generates \mathbb{R}^n.

$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for \mathbb{R}^2

$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

...... any two independent vectors form a basis for \mathbb{R}^2
Basis

- The pivot columns of a matrix form a basis for its columns space.

\[
\begin{bmatrix}
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

pivot columns

Col \(\mathbf{A} \) = Span \(\left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \\ 0 \end{bmatrix} \right\} \)
Property

• (a) S is contained in $\text{Span } S$

• (b) If a finite set S' is contained in $\text{Span } S$, then $\text{Span } S'$ is also contained in $\text{Span } S$
 • Because $\text{Span } S$ is a subspace

• (c) For any vector z, $\text{Span } S =$ $\text{Span } S \cup \{z\}$ if and only if z belongs to the $\text{Span } S$
Theorem

• 1. A basis is the **smallest** generation set.
• 2. A basis is the **largest** independent vector set in the subspace.
• 3. Any two bases for a subspace **contain the same number of vectors**.
 • The number of vectors in a basis for a nonzero subspace V is called **dimension** of V ($\dim V$).
Theorem 3

• The number of vectors in a basis for a subspace V is called the dimension of V, and is denoted $\text{dim } V$
 • The dimension of zero subspace is 0

$\text{dim } \mathbb{R}^2 = 2$

$\text{dim } \mathbb{R}^3 = 3$

Every basis of \mathbb{R}^n has n vectors.
Example

\[V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 : x_1 = 3x_2 - 5x_3 + 6x_4 = 0 \right\} \]

Find \(\dim V \)

\(\dim V = 3 \)

\[\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_2 - 5x_3 + 6x_4 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \]

Basis? Independent vector set that generates \(V \)
Any two bases for a subspace contain the same number of vectors.

R^m have a basis \{e_1, e_2, \ldots, e_m\}
All bases have m vectors

A basis is the smallest generation set.

A vector set generates R^m must contain at least m vectors.
Because a basis is the smallest generation set
Any other generation set has at least m vectors.

A basis is the largest independent set in the subspace.

Any independent vector set in R^m contain at most m vectors.
Independent

All columns are independent

Every column is a pivot column

Every column in RREF(A) is standard vector.

Columns are linearly independent

3x4

\[
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
\]

RREF

\[
\begin{bmatrix}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & * \\
\end{bmatrix}
\]

Cannot be a pivot column
Rank

- Given a mxn matrix A:
 - \(\text{Rank } A \leq \min(m, n) \)
 - Because “the columns of A are independent” is equivalent to “\(\text{rank } A = n \)”
 - If \(m < n \), the columns of A are dependent.

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
\]

3 X 4
Rank A \(\leq 3 \)

\[
\begin{bmatrix}
* \\
* \\
* \\
\end{bmatrix}, \begin{bmatrix}
* \\
* \\
* \\
\end{bmatrix}, \begin{bmatrix}
* \\
* \\
* \\
\end{bmatrix}, \begin{bmatrix}
* \\
* \\
* \\
\end{bmatrix}
\]

A matrix set has 4 vectors belonging to \(\mathbb{R}^3 \) is dependent

In \(\mathbb{R}^m \), you cannot find more than \(m \) vectors that are independent.
Consistent or not

Span\{a_1, \ldots, a_n\} = \mathbb{R}^m = \text{Rank } A = \text{no. of rows}

m \text{ independent vectors can span } \mathbb{R}^m

More than } m \text{ vectors in } \mathbb{R}^m \text{ must be dependent.}
Theorem 1

A basis is the smallest generation set.

If there is a generation set S for subspace V,

The size of basis for V is smaller than or equal to S.

Reduction Theorem

There is a basis containing in any generation set S.

S can be reduced to a basis for V by removing some vectors.
Theorem 1 – Reduction Theorem

Suppose $S = \{u_1, u_2, \ldots, u_k\}$ is a generation set of subspace V.

Let $A = \begin{bmatrix} u_1 & u_2 & \cdots & u_k \end{bmatrix}$.

Subspace $V = \text{Span } S$ Let $A = \begin{bmatrix} u_1 & u_2 & \cdots & u_k \end{bmatrix}$.

$= \text{Col } A$

The basis of $\text{Col } A$ is the pivot columns of A. Subset of S
Theorem 1 – Reduction Theorem

Subspace $V = \text{Span} S = \text{Col} A = \text{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right\}$

Smallest generation set

Generation set

$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \right\}$

$A = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 & -6 & 2 & 0 & 3 & 9 \end{bmatrix} \Rightarrow \text{RREF} \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Theorem 2

A basis is the largest independent set in the subspace.

If the size of basis is \(k \), then you cannot find more than \(k \) independent vectors in the subspace.

Extension Theorem

Given an independent vector set \(S \) in the space, \(S \) can be extended to a basis by adding more vectors.
Theorem 2 – Extension Theorem

Independent set: 我不是一個 basis 就是正在成為一個 basis

There is a subspace V
Given a independent vector set S (elements of S are in V)
\[
\begin{align*}
&\text{If Span } S = V, \text{ then } S \text{ is a basis} \\
&\text{If Span } S \neq V, \text{ find } v_1 \text{ in } V, \text{ but not in Span } S \\
&S = S \cup \{v_1\} \text{ is still an independent set} \\
&\text{If Span } S = V, \text{ then } S \text{ is a basis} \\
&\text{If Span } S \neq V, \text{ find } v_2 \text{ in } V, \text{ but not in Span } S \\
&S = S \cup \{v_2\} \text{ is still an independent set}
\end{align*}
\]

…… You will find the basis in the end.
Theorem 3

• Any two bases of a subspace \(V\) contain the same number of vectors

Suppose \(\{u_1, u_2, \ldots, u_k\}\) and \(\{w_1, w_2, \ldots, w_p\}\) are two bases of \(V\).

Let \(A = [u_1 \ u_2 \ \cdots \ u_k]\) and \(B = [w_1 \ w_2 \ \cdots \ w_p]\).

Since \(\{u_1, u_2, \ldots, u_k\}\) spans \(V\), \(\exists \ c_i \in \mathbb{R}^k\) s.t. \(Ac_i = w_i\) for all \(i\)

\[\Rightarrow A[c_1 \ c_2 \ \cdots \ c_p] = [w_1 \ w_2 \ \cdots \ w_p] \Rightarrow AC = B\]

Now \(Cx = 0\) for some \(x \in \mathbb{R}^p\) \(\Rightarrow ACx = Bx = 0\)

\(B\) is independent vector set \(\Rightarrow x = 0 \Rightarrow c_1 \ c_2 \ \cdots \ c_p\) are independent

\(c_i \in \mathbb{R}^k \Rightarrow p \leq k\)

Reversing the roles of the two bases one has \(k \leq p \Rightarrow p = k\).
Theorem 4.9 (P258)

• If V and W are subspaces of \mathbb{R}^n with V contained in W, then $\dim V \leq \dim W$

• If $\dim V = \dim W$, $V=W$

• Proof:
 B_V is a basis of V, V in W, B_V in W

 B_V is an independent set in W

 By extension theorem, B_V is in the basis of W \(\dim V \leq \dim W \)

 If $\dim V = \dim W = k$

 B_V is a linear independent set in W, with k elements

 It is also the span of W
\mathbb{R}^3 is the only 3-dim subspace of itself

The 2-dim subspace with basis \{u,v\}

The 0-dim subspace

The 1-dim subspace with basis \{u\}
Concluding Remarks

• 1. A basis is the smallest generation set.
• 2. A basis is the largest independent vector set in the subspace.
• 3. Any two bases for a subspace contain the same number of vectors.
 • The number of vectors in a basis for a nonzero subspace V is called dimension of V (dim V).
Concluding Remarks

- **Generation set**
- **Same size**
- **Independent vector set**
- **Basis**

敦煌 ... 主要是使用雕（通过减除材料来造型）及塑（通过叠加材料来造型）的方式 (from wiki)