Hung-yi Lee

Chapter 5

- In chapter 4, we already know how to consider a function from different aspects (coordinate system).
- In chapter 5, we will learn how to find a "good" coordinate system for a function.
- Scope: Chapter 5.1 5.4
 - Chapter 5.4 has *

Outline

- What is Eigenvalue and Eigenvector?
 - Eigen (German word): "unique to"
- How to find eigenvectors (given eigenvalues)?
- Check whether a scalar is an eigenvalue
- How to find all eigenvalues?
- Reference: Textbook Chapter 5.1 and 5.2

Definition

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of A excluding zero vector

 $A\mathbf{0} = \lambda \mathbf{0}$

• λ is an eigenvalue of A that corresponds to v

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of A excluding zero vector
 - λ is an eigenvalue of A that corresponds to v
- T is a *linear operator.* If $T(v) = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of T excluding zero vector
 - λ is an eigenvalue of T that corresponds to v

• Example: Shear Transform

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right)$$

• Example: Reflection

reflection operator T about the line y = (1/2)x

• Example: Rotation

Source of image: https://twitter.com/circleponiponi /status/1056026158083403776

Do any n x n matrix or linear operator have eigenvalues?

How to find eigenvectors (given eigenvalues)

- An eigenvector of *A* corresponds to a unique eigenvalue.
- An eigenvalue of A has infinitely many eigenvectors.

Example:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} v = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
Eigenvalue= -1
Eigenvalue= -1

Do the eigenvectors correspond to the same eigenvalue form a subspace?

$$Av = \lambda v$$
 $A(cv) = \lambda(cv)$ $Au = \lambda u$ $A(u + v) = \lambda(u + v)$

Eigenspace

- Assume we know λ is the eigenvalue of matrix A
- Eigenvectors corresponding to λ

$A\mathbf{v} = \lambda \mathbf{v}$
$A\mathbf{v} - \lambda\mathbf{v} = 0$
$A\mathbf{v} - \lambda I_n \mathbf{v} = 0$
$(A - \lambda I_n)\mathbf{v} = 0$
matrix

Eigenvectors corresponding to λ are nonzero solution of $(A - \lambda I_n)\mathbf{v} = \mathbf{0}$

Eigenvectors corresponding to λ

$$= Null(A - \lambda I_n) - \{\mathbf{0}\}$$

eigenspace

Eigenspace of λ : Eigenvectors corresponding to $\lambda + \{0\}$

Check whether a scalar is an eigenvalue

Check Eigenvalues

Null($A - \lambda I_n$): eigenspace of λ

- How to know whether a scalar λ is the eigenvalue of A?

Check the dimension of eigenspace of $\boldsymbol{\lambda}$

If the dimension is 0

Eigenspace only contains {0}

Check Eigenvalues

Null($A - \lambda I_n$): eigenspace of λ

 Example: to check 3 and –2 are eigenvalues of the linear operator T

Check Eigenvalues

Null($A - \lambda I_n$): eigenspace of λ

• Example: check that 3 is an eigenvalue of *B* and find a basis for the corresponding eigenspace

 $B = \begin{vmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{vmatrix}$ find the solution set of $(B - 3I_3)\mathbf{x} = \mathbf{0}$ $\left|\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right| = \left|\begin{array}{c} x_1 \\ x_3 \\ x_3 \end{array}\right|$ find the RREF of $B - 3I_{3}$ $= x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $= \left| \begin{array}{ccc} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right|$

A scalar t is an eigenvalue of A

• Example 1: Find the eigenvalues of $A = \begin{bmatrix} -4 & -3 \\ 3 & 6 \end{bmatrix}$

A scalar t is an eigenvalue of A $det(A - tI_n) = 0$

$$A - tI_2 = \begin{bmatrix} -4 - t & -3 \\ 3 & 6 - t \end{bmatrix}$$

 $\det(A - tI_2)$

=0

The eigenvalues of A are -3 or 5.

• Example 1: Find the eigenvalues of $A = \begin{bmatrix} -4 & -3 \\ 3 & 6 \end{bmatrix}$

The eigenvalues of A are -3 or 5.

Eigenspace of -3 $Ax = -3x \quad (A + 3I)x = 0$ find the solution

Eigenspace of 5 $Ax = 5x \qquad (A - 5I)x = 0$

find the solution

• Example 2: find the eigenvalues of linear operator

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}\right) = \begin{bmatrix} -x_{1} \\ 2x_{1} - x_{2} - x_{3} \\ -x_{3} \end{bmatrix} \xrightarrow{\bullet} A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

matrix
A scalar *t* is an eigenvalue of A $\longrightarrow det(A - tI_{n}) = 0$
$$A - tI_{n} = \begin{bmatrix} -1 - t & 0 & 0 \\ 2 & -1 - t & -1 \\ 0 & 0 & -1 - t \end{bmatrix}$$

$$det(A - tI_{n}) = (-1 - t)^{3}$$

 Example 3: linear operator on R² that rotates a vector by 90°

A scalar t is an eigenvalue of A $det(A - tI_n) = 0$

standard matrix of the 90°-rotation:

$$\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]$$

$$\det\left(\left[\begin{array}{rrr} 0 & -1\\ 1 & 0 \end{array}\right] - tI_2\right)$$

No eigenvalues, no eigenvectors

A scalar t is an eigenvalue of A $det(A - tI_n) = 0$

A is the standard matrix of linear operator T

 $det(A - tI_n)$: Characteristic polynomial of A linear operator T

 $det(A - tI_n) = 0$: Characteristic equation of A linear operator T

Eigenvalues are the roots of characteristic polynomial or solutions of characteristic equation.

- In general, a matrix A and RREF of A have different characteristic polynomials. Different Eigenvalues
- Similar matrices have the same characteristic polynomials
 The same Eigenvalues

$$det(B - tI) = det(P^{-1}AP - P^{-1}(tI)P) \qquad B = P^{-1}AP$$
$$= det(P^{-1}(A - tI)P)$$
$$= det(P^{-1})det(A - tI)det(P)$$
$$= \left(\frac{1}{det(P)}\right)det(A - tI)det(P) = det(A - tI)$$

- Question: What is the order of the characteristic polynomial of an *n×n* matrix *A*?
 - The characteristic polynomial of an *n*×*n* matrix is indeed a polynomial with degree *n*
 - Consider det($A tI_n$)

- Question: What is the number of eigenvalues of an n×n matrix A?
 - Fact: An n x n matrix A have less than or equal to n eigenvalues
 - Consider complex roots and multiple roots

Characteristic Polynomial v.s. Eigenspace

• Characteristic polynomial of A is

• The eigenvalues of an upper triangular matrix are its diagonal entries.

Characteristic Polynomial:

$$\begin{bmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{bmatrix} \qquad det \begin{bmatrix} a-t & * & * \\ 0 & b-t & * \\ 0 & 0 & c-t \end{bmatrix} \\ = (a-t)(b-t)(c-t)$$

The determinant of an upper triangular matrix is the product of its diagonal entries.

Summary

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of A excluding zero vector
 - λ is an eigenvalue of A that corresponds to v
- Eigenvectors corresponding to λ are nonzero solution of $(A \lambda I_n)\mathbf{v} = \mathbf{0}$
 - Eigenvectors
 - corresponding to λ

$$= \frac{Null(A - \lambda I_n)}{eigenspace} - \{\mathbf{0}\}$$

Eigenspace of λ :

Eigenvectors

corresponding to $\lambda + \{0\}$

• A scalar t is an eigenvalue of A

 $det(A - tI_n) = 0$