Solving System of

 Linear Equations
Equivalent

- Two systems of linear equations are equivalent if they have exactly the same solution set.

Equivalent

- Applying the following three operations on a system of linear equations will produce an equivalent one.
-1. Interchange

$$
\left\{\begin{array}{cc}
3 x_{1} & +x_{2} \\
x_{1} & -3 x_{2}
\end{array}=0.0 \square\left\{\begin{array}{cc}
x_{1} & -3 x_{2}=0 \\
3 x_{1} & +x_{2}=10
\end{array}\right.\right.
$$

-2. Scaling (non zero)

$$
\left\{\begin{array}{cc}
3 x_{1}+x_{2}=10 \\
x_{1} & -3 x_{2}
\end{array}=0 \times(-3) \quad \square\left\{\begin{array}{cc}
3 x_{1} & +x_{2}=10 \\
-3 x_{1} & +9 x_{2}=0
\end{array}\right.\right.
$$

-3. Row Addition

$$
\left\{\begin{array}{cc}
3 x_{1} & +x_{2}
\end{array}=10 \quad \square\left\{\begin{array}{cc}
10 x_{2} & =10 \\
x_{1} & -3 x_{2}
\end{array}=0 \times(-3) \quad \square x_{1}-3 x_{2}=0\right.\right.
$$

Solving system of linear equation

- Strategy
- We know how to transform the given system of linear equations into another equivalent one.
- We do it again and again until the system of linear equation is very simple
- Finally, we know the answer at a glance.

$$
\begin{aligned}
& \left\{\begin{array}{cc}
x_{1} & -3 x_{2} \\
3 x_{1} & +x_{2}
\end{array}=0 \times 3 \times 3 . \square\left\{\begin{array}{cc}
x_{1} & -3 x_{2}=0 \\
& 10 x_{2}=10 \times 1 / 10
\end{array}\right.\right. \\
& \left\{\begin{array}{lll}
x_{1} & & =3 \\
& x_{2} & =1
\end{array}\left\{\begin{array}{cc}
x_{1} & -3 x_{2}=0 \\
& x_{2}=1
\end{array}\right) \times 3\right.
\end{aligned}
$$

Augmented Matrix

- a system of linear equation

$$
\begin{gathered}
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m} \\
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & \cdots
\end{array} a_{1 n}\right. \\
a_{21} & a_{22} \\
\vdots & \vdots \\
\mathrm{~m} \times \mathrm{n} \\
a_{m 1} & a_{m 2} \\
\text { coefficient matrix }
\end{array}
\end{gathered}
$$

Augmented Matrix

- a system of linear equation

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& A \mathrm{x}=\mathrm{b} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
& m \times(n+1) \\
& {\left[\begin{array}{c}
\mathrm{m} \times \mathrm{n} \times 1 \\
{[A \mid \mathrm{b}]}
\end{array}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]\right.} \\
& \text { augmented matrix }
\end{aligned}
$$

Back to Equivalent

-1. Interchange

$$
\left\{\begin{array} { c c c }
{ 3 x _ { 1 } } & { + x _ { 2 } } & { = 1 0 } \\
{ x _ { 1 } } & { - 3 x _ { 2 } } & { = 0 }
\end{array} \square \left\{\begin{array}{ccc}
x_{1} & -3 x_{2} & =0 \\
3 x_{1} & +x_{2} & =10
\end{array}\right.\right.
$$

-2. Scaling (non zero)

$$
\left\{\begin{array} { c c }
{ 3 x _ { 1 } + x _ { 2 } = 1 0 } \\
{ x _ { 1 } - 3 x _ { 2 } } & { = 0 \times (- 3) }
\end{array} \square \left\{\begin{array}{cc}
3 x_{1} & +x_{2}=10 \\
-3 x_{1} & +9 x_{2}=0
\end{array}\right.\right.
$$

- 3. Row Addition

$$
\left\{\begin{array}{cc}
3 x_{1} & +x_{2}
\end{array}=10 \quad \square\left\{\begin{array}{cc}
10 x_{2} & =10 \\
x_{1} & -3 x_{2}
\end{array}=0 \times(-3) \quad \square \begin{array}{cc}
& -3 x_{2}
\end{array}=0\right.\right.
$$

Back to Equivalent

elementary row operations

-1. Interchange Interchange any two rows of the matrix

$$
\left[\begin{array}{ccc}
3 & 1 & 10 \\
1 & -3 & 0
\end{array}\right] \longleftrightarrow\left[\begin{array}{ccc}
1 & -3 & 0 \\
3 & 1 & 10
\end{array}\right]
$$

- 2. Scaling (non zero)

Multiply every entry of some row by the same nonzero scalar

$$
\left[\begin{array}{ccc}
3 & 1 & 10 \\
1 & -3 & 0
\end{array}\right]_{X(-3)} \longrightarrow\left[\begin{array}{ccc}
3 & 1 & 10 \\
-3 & 9 & 0
\end{array}\right]
$$

Add a multiple of one row of the

- 3. Row Addition matrix to another row

$$
\left[\begin{array}{ccc}
3 & 1 & 10 \\
1 & -3 & 0
\end{array}\right]_{\times(-3)} \longleftrightarrow\left[\begin{array}{ccc}
0 & 10 & 10 \\
1 & -3 & 0
\end{array}\right]
$$

Solving system of linear equation

A complex system of linear equations

A simple system of linear equations

elementary row operations

1. Interchange any two rows of the matrix
2. Multiply every entry of some row by the same nonzero scalar
3. Add a multiple of one row of the matrix to another row

$$
\left.\left.\begin{array}{ll}
\left\{\begin{array}{cc}
x_{1} & -3 x_{2}=0 \times 3 \\
3 x_{1} & +x_{2}
\end{array}=10\right.
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & 0 \\
3 & 1 & 10
\end{array}\right]^{\times 3}\right\}
$$

Solving system of linear equation

A complex system of linear equations
????? A simple system of linear equations

1. Interchange any two rows of the matrix
2. Multiply every entry of some row by the same nonzero scalar
3. Add a multiple of one row of the matrix to another row
