（依賴的，不獨立的）
 Dependent and Independent
 （獨立的，自主的）

Definition

- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear dependent \quad Find one \longrightarrow Obtain many
- If there exist scalars $x_{1}, x_{2}, \cdots, x_{n}$, not all zero, such that

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0}
$$

- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear independent

$$
\begin{aligned}
& x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0} \\
& \text { Only if } x_{1}=x_{2}=\cdots=x_{n}=0 \quad \text { unique }
\end{aligned}
$$

- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear dependent
- If there exist scalars $x_{1}, x_{2}, \cdots, x_{n}$, not all zero, such that $x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0}$
- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear independent

$$
\begin{aligned}
& x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0} \\
& \text { Only if } x_{1}=x_{2}=\cdots=x_{n}=0
\end{aligned}
$$

$\left\{\left[\begin{array}{c}-4 \\ 12 \\ 6\end{array}\right], \quad\left[\begin{array}{c}-10 \\ 30 \\ 15\end{array}\right]\right\}$ Dependent or Independent? dependent

$$
x_{1}\left[\begin{array}{c}
-4 \\
12 \\
6
\end{array}\right]+x_{2}\left[\begin{array}{c}
-10 \\
30 \\
15
\end{array}\right]=\mathbf{0}
$$

- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear dependent
- If there exist scalars $x_{1}, x_{2}, \cdots, x_{n}$, not all zero, such that $x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0}$
- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear independent

$$
\begin{aligned}
& x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0} \\
& \text { Only if } x_{1}=x_{2}=\cdots=x_{n}=0
\end{aligned}
$$

$\left\{\left[\begin{array}{l}6 \\ 3\end{array}\right] \quad\left[\begin{array}{l}1 \\ 8\end{array}\right] \quad\left[\begin{array}{c}7 \\ 11\end{array}\right]\right\} \quad$ Dependent or Independent? dependent

$$
x_{1}\left[\begin{array}{l}
6 \\
3 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
8 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{c}
7 \\
11 \\
6
\end{array}\right]=\mathbf{0}
$$

- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear dependent
- If there exist scalars $x_{1}, x_{2}, \cdots, x_{n}$, not all zero, such that $x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0}$
- A set of n vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right\}$ is linear independent

$$
\begin{aligned}
& x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0} \\
& \text { Only if } x_{1}=x_{2}=\cdots=x_{n}=0
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\left\{\left[\begin{array}{c}
3 \\
-1 \\
7
\end{array}\right],\right. & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],}
\end{array} \begin{array}{c}
-2 \\
5 \\
1
\end{array}\right]\right\} \text { Dependent or Independent? } \quad \text { dependent }
$$

Any set contains zero vector would be linear dependent

Linear Dependent

Given a vector set，$\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ ，there exists scalars $x_{1}, x_{2}, \ldots, x_{n^{\prime}}$ ，that are not all zero，such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\square+x_{n} \mathbf{a}_{n}=\mathbf{0}$ ．

$$
x_{1} \boldsymbol{a}_{\mathbf{1}}+x_{2} \boldsymbol{a}_{\mathbf{2}} \ldots+x_{i} \boldsymbol{a}_{\boldsymbol{i}}+\cdots+x_{n} \boldsymbol{a}_{\boldsymbol{n}}=\mathbf{0}
$$

永遠可以找到某一項有非 0 係數 $x_{i} \neq 0$

$$
\begin{aligned}
& x_{1} \boldsymbol{a}_{\mathbf{1}}+x_{2} \boldsymbol{a}_{2} \ldots+x_{n} \boldsymbol{a}_{\boldsymbol{n}}=-x_{i} \boldsymbol{a}_{\boldsymbol{i}} \\
& -\left(\frac{x_{n}}{x_{1}}\right) \boldsymbol{a}_{\mathbf{1}}-\left(\frac{x_{n}}{x_{2}}\right) \boldsymbol{a}_{\mathbf{2}} \ldots-\left(\frac{x_{n}}{x_{i}}\right) \boldsymbol{a}_{n}=\boldsymbol{a}_{\boldsymbol{i}}
\end{aligned}
$$

Given a vector set，$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ ，if there exists any \mathbf{a}_{i} that is a linear combination of other vectors

Linear Dependent

Given a vector set，$\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ ，there exists scalars $x_{1}, x_{2}, \ldots, x_{n^{\prime}}$ ，that are not all zero，such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\square+x_{n} \mathbf{a}_{n}=\mathbf{0}$ ．

$$
\begin{aligned}
\boldsymbol{a}_{\boldsymbol{i}}=c_{1} \boldsymbol{a}_{\mathbf{1}}+c_{2} \boldsymbol{a}_{2} \ldots+c_{n} \boldsymbol{a}_{\boldsymbol{n}} \\
-c_{1} \boldsymbol{a}_{\mathbf{1}}-c_{2} \boldsymbol{a}_{2} \ldots+\boldsymbol{a}_{\boldsymbol{i}} . .-c_{n} \boldsymbol{a}_{\boldsymbol{n}}=\mathbf{0} \\
\text { 至少這項有非 0係數 } \quad x_{i} \neq 0
\end{aligned}
$$

Given a vector set，$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ ，if there exists any a_{i} that is a linear combination of other vectors

Linear Dependent＝Vector Set 中有人要廢

Given a vector set，$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ ，there exists scalars $x_{1}, x_{2}, \ldots, x_{n}$ ，that are not all zero，such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\square+x_{n} \mathbf{a}_{n}=\mathbf{0}$ ．
（for $n \geq 2$ ）

a_{i} 在要廢

Given a vector set，$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ ，if there exists any \mathbf{a}_{i} that is a linear combination of other vectors

$A \mathrm{x}=\mathrm{b}$
 Summary

Intuition

Dependent:

Once we have solution, we have

untunde.

- Intuitive link between dependence and the number of solutions

dependent

$\left[\begin{array}{ccc}6 & 1 & 7 \\ 3 & 8 & 11 \\ 3 & 3 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}14 \\ 22 \\ 12\end{array}\right] \quad 1 \cdot\left[\begin{array}{l}6 \\ 3 \\ 3\end{array}\right]+1 \cdot\left[\begin{array}{l}1 \\ 8 \\ 3\end{array}\right]=\left[\begin{array}{c}7 \\ 11 \\ 6\end{array}\right]$
$1 \cdot\left[\begin{array}{l}6 \\ 3 \\ 3\end{array}\right]+1 \cdot\left[\begin{array}{l}1 \\ 8 \\ 3\end{array}\right]+1 \cdot\left[\begin{array}{c}7 \\ 11 \\ 6\end{array}\right]=\left[\begin{array}{l}14 \\ 22 \\ 12\end{array}\right] \quad\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
\(2 \cdot\left[$$
\begin{array}{l}6 \\
3 \\
3\end{array}
$$\right]+2 \cdot\left[$$
\begin{array}{l}1 \\
8 \\
3\end{array}
$$\right]=\left[$$
\begin{array}{l}14 \\
22 \\
12\end{array}
$$\right] \quad\left[$$
\begin{array}{l}x_{1} \\
x_{2} \\
x_{3}\end{array}
$$\right]=\left[\begin{array}{l}2

2

0\end{array}\right] \quad\)| Infinite |
| :--- |
| Solution |

Proof

- Columns of A are dependent \rightarrow If $A x=b$ have solution, it will have Infinite solutions
- If $A x=b$ have Infinite solutions \rightarrow Columns of A are dependent

Homogeneous linear equations

Proof

$$
A x=\mathbf{0} \text { (always having } x=\mathbf{0} \text { as solution) }
$$

- Columns of A are dependent \rightarrow If $A x=\mathbf{0}$ have solution, it will have Infinite solutions
$A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$ dependent set
$A x=\mathbf{0} \Rightarrow x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0}$
there exist scalars $x_{1}, x_{2}, \cdots, x_{n}$, not all zero
- If $A x=\mathbf{0}$ have Infinite solutions \rightarrow Columns of A are dependent
$A x=\mathbf{0}$ have non-zero solutions
$x_{1}, x_{2}, \cdots, x_{n}$,
$x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\mathbf{0}$ not all zero

Proof

$A x=0$ have infinite solutions

- Columns of A are dependent \rightarrow If $A x=b$ have solution, it will have Infinite solutions

We can find non-zero
solution u such that $A u=\mathbf{0}$
There exists v such that $A v=\mathrm{b}$

$$
A(u+v)=\mathrm{b}
$$

$u+v$ is another
solution different to \mathbf{v}

- If $A x=b$ have Infinite solutions \rightarrow Columns of A are dependent

$$
\begin{array}{ll}
u \neq v & A u=\mathrm{b} \\
& A v=\mathrm{b}
\end{array}
$$

$$
\left\{\begin{array}{c}
A x=\mathbf{0} \text { have infinite s } \\
\frac{A(u-v)}{\text { Non-zero }}=\mathbf{0}
\end{array}\right.
$$

