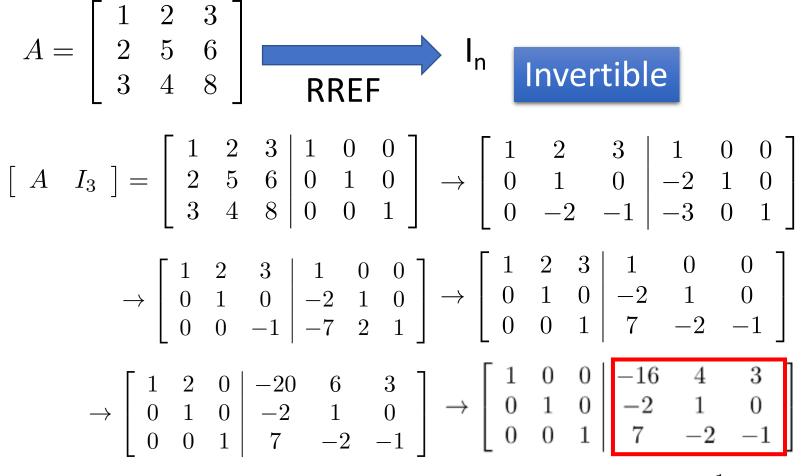
Find Inverse of Matrix

2 X 2 Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \qquad \text{Find } e, f, g, h$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, A is not invertible.


 Let A be an n x n matrix. A is invertible if and only if the reduced row echelon form of A is In

$$\frac{E_k \cdots E_2 E_1 A}{A^{-1}} = R = I_n$$

$$A^{-1} = E_k \cdots E_2 E_1$$

- Let A be an n x n matrix. Transform [A I_n] into its RREF [R B]
 - R is the RREF of A
 - B is a nxn matrix (not RREF)
- If $R = I_n$, then A is invertible
 - B = A⁻¹

$$E_k \cdots E_2 E_1 \begin{bmatrix} A & I_n \end{bmatrix}$$
$$= \begin{bmatrix} R & E_k \cdots E_2 E_1 \end{bmatrix}$$
$$I_n \qquad A^{-1}$$

 A^{-1}

- Let A be an n x n matrix. Transform [A I_n] into its RREF [R B]
 - R is the RREF of A
 - B is a nxn matrix (not RREF)
- If $R = I_n$, then A is invertible
 - B = A⁻¹
- To find A⁻¹C, transform [A C] into its RREF [R C']

$$E_k \cdots E_2 E_1 \begin{bmatrix} A & C \end{bmatrix} = \begin{bmatrix} R & E_k \cdots E_2 E_1 C \end{bmatrix}$$
$$I_n \qquad A^{-1}$$

 $A^{-1}C$