

Matrix Inverse

Inverse of Function

- Two functions f and g are inverse of each other

$$
f=g^{-1}, g=f^{-1}
$$

For anyv

$$
\begin{aligned}
& y=g(x) \longleftarrow \quad \mathrm{g}, \longleftarrow x=f(v) \longleftarrow \quad \mathrm{f} \\
& y=v \\
& y=f(x) \longleftarrow v \\
& y=v
\end{aligned}
$$

Inverse of Matrix

- A and B are inverses to each other

For anyv

$$
A B=I
$$

$$
\begin{aligned}
& y=A x \\
& y=v
\end{aligned}
$$

$$
\begin{gathered}
y=B x \\
y=v
\end{gathered} \underbrace{\mathrm{~B} \longleftarrow x=A v \longleftarrow v}_{B A=I} \longleftarrow
$$

Inverse of Matrix Invertible = Non-singular Not Invertible = Singular

A is called invertible if there is a matrix B such that $A B=I$ and $B A=I$

B is an inverse of $\mathrm{A} \quad B=A^{-1} \quad A=B^{-1}$

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right] \quad B=\left[\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right] \quad A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Non-square matrix cannot be invertible

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right] \quad C=\left[\begin{array}{cc}
2 & 1 \\
-1 & -1 \\
0 & 2
\end{array}\right]
$$

Inverse of Matrix

- Non-square matrix cannot be invertible?

Inverse of Matrix

- Not all the square matrix is invertible

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- Unique

$$
\begin{gathered}
A B=I \quad B A=I \quad A C=I \quad C A=I \\
B=B I=B(A C)=(B A) C=I C=C
\end{gathered}
$$

Inverse for matrix product

- A and B are invertible nxn matrices, is $A B$ invertible? yes

$$
\begin{gathered}
(A B)^{-1}=B^{-1} A^{-1} \\
B^{-1} A^{-1}(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} B=I \\
(A B) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I
\end{gathered}
$$

- Let $A_{1}, A_{2}, \cdots, A_{k}$ be nxn invertible matrices. The product $A_{1} A_{2} \cdots A_{k}$ is invertible, and

$$
\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=\left(A_{k}\right)^{-1}\left(A_{k-1}\right)^{-1} \cdots\left(A_{1}\right)^{-1}
$$

Inverse for matrix transpose

- If A is invertible, is A^{\top} invertible?

$$
\left(A^{T}\right)^{-1}=? \quad\left(A^{-1}\right)^{T}
$$

$(A B)^{T}=B^{T} A^{T}$
$A^{-1} A=I \square\left(A^{-1} A\right)^{T}=I \square A^{T}\left(A^{-1}\right)^{T}=I$
$A A^{-1}=I \square\left(A A^{-1}\right)^{T}=I \square\left(A^{-1}\right)^{T} A^{T}=I$

