Invertible (Proof)
Summary

• Let A be an n x n matrix. A is invertible if and only if
 • The columns of A span \(\mathbb{R}^n \)
 • For every \(b \) in \(\mathbb{R}^n \), the system \(Ax=b \) is consistent
 • The rank of A is n
 • The columns of A are linear independent
 • The only solution to \(Ax=0 \) is the zero vector
 • The nullity of A is zero
 • The reduced row echelon form of A is \(I_n \)
 • A is a product of elementary matrices
 • There exists an n x n matrix B such that \(BA = I_n \)
 • There exists an n x n matrix C such that \(AC = I_n \)
Invertible

• Let A be an $n \times n$ matrix.
 • Onto \rightarrow One-to-one \rightarrow invertible
 • The columns of A span \mathbb{R}^n
 • For every b in \mathbb{R}^n, the system $Ax=b$ is consistent
 • The rank of A is the number of rows
 • One-to-one \rightarrow Onto \rightarrow invertible
 • The columns of A are linear independent
 • The rank of A is the number of columns
 • The nullity of A is zero
 • The only solution to $Ax=0$ is the zero vector
 • The reduced row echelon form of A is I_n

$\text{Rank } A = n$
Is A Invertible?

• Let A be an $n \times n$ matrix. A is invertible if and only if
 • The reduced row echelon form of A is I_n

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 4 & 8 \end{bmatrix} \quad \xrightarrow{\text{RREF}} \quad I_n \quad \text{Invertible}$$

$$B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \quad \xrightarrow{\text{RREF}} \quad \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{Not Invertible}$$
Summary

Let A be an $n \times n$ matrix. A is invertible if and only if:

- The columns of A span \mathbb{R}^n
- For every b in \mathbb{R}^n, the system $Ax = b$ is consistent
- The rank of A is n
- The columns of A are linear independent
- The only solution to $Ax = 0$ is the zero vector
- The nullity of A is zero
- The reduced row echelon form of A is I_n
- A is a product of elementary matrices
- There exists an $n \times n$ matrix B such that $BA = I_n$
- There exists an $n \times n$ matrix C such that $AC = I_n
A is invertible.

There exists an $n \times n$ matrix B such that $BA = I_n$.

The only solution to $Ax = 0$ is the zero vector.

If $Av = 0$, then ...

$BA = I_n$

$BAv = 0$

$I_nv = v$

$v = 0$
A is invertible.

There exists an $n \times n$ matrix C such that $AC = I_n$.

For every b in \mathbb{R}^n, $Ax = b$ is consistent.

For any vector b,

$$AC = I_n$$

$$ACb$$

$$I_nb = b$$

Cb is always a solution for b.

For any vector b,

$AC = I_n$
Summary

- Let A be an $n \times n$ matrix. A is invertible if and only if:
 - The columns of A span \mathbb{R}^n
 - For every b in \mathbb{R}^n, the system $Ax = b$ is consistent
 - The rank of A is n
 - The columns of A are linear independent
 - The only solution to $Ax = 0$ is the zero vector
 - The nullity of A is zero
 - The reduced row echelon form of A is I_n
 - A is a product of elementary matrices
 - There exists an $n \times n$ matrix B such that $BA = I_n$
 - There exists an $n \times n$ matrix C such that $AC = I_n$