Orthogonal Basis Hung-yi Lee

Outline

Orthogonal/Orthonormal Basis

Orthogonal Decomposition Theory

How to find Orthogonal Basis

Reference: Textbook Chapter 7.2, 7.3

Orthogonal Set

 A set of vectors is called an orthogonal set if every pair of distinct vectors in the set is orthogonal.

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 An orthogonal set?

By definition, a set with only one vector is an orthogonal set.

Is orthogonal set independent?

NO

(A vector set with all zero vectors)

Independent?

 Any orthogonal set of nonzero vectors is linearly independent.

Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$$
 be an orthogonal set $\mathbf{v}_i \neq \mathbf{0}$ for $i = 1, 2, ..., k$.

Assume $c_1, c_2, ..., c_k$ make $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k = \mathbf{0}$

$$(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_i\mathbf{v}_i + \cdots + c_k\mathbf{v}_k) \cdot \mathbf{v}_i$$

$$= c_1\mathbf{v}_1 \cdot \mathbf{v}_i + c_2\mathbf{v}_2 \cdot \mathbf{v}_i + \cdots + c_i\mathbf{v}_i \cdot \mathbf{v}_i + \cdots + c_k\mathbf{v}_k \cdot \mathbf{v}_i$$

$$= c_i(\mathbf{v}_i \cdot \mathbf{v}_i) = c_i||\mathbf{v}_i||^2 \qquad c_i = 0$$

$$\neq 0 \qquad \qquad \neq 0$$

Orthonormal Set

 A set of vectors is called an orthonormal set if it is an orthogonal set, and the norm of all the vectors is 1

$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 5\\-4\\1 \end{bmatrix} \right\}$$
Is orthonormal set independent?

$$\frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \quad \frac{1}{\sqrt{42}} \begin{bmatrix} 5\\-4\\1 \end{bmatrix}$$

independent?

Yes

A vector that has norm equal to 1 is called a unit vector.

Orthogonal Basis

 A basis that is an orthogonal (orthonormal) set is called an orthogonal (orthonormal) basis

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Orthogonal basis of R³ Orthonormal basis of R³

Outline

Orthogonal/Orthonormal Basis

Orthogonal Decomposition Theory

How to find Orthogonal Basis

Orthogonal Basis

$$[u]_S = \begin{vmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{vmatrix}$$

• Let $S = \{v_1, v_2, \cdots, v_k\}$ be an orthogonal basis for a subspace W, and let u be a vector in W.

$$u = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

$$\frac{u \cdot v_1}{\|v_1\|^2} \frac{u \cdot v_2}{\|v_2\|^2} \frac{u \cdot v_k}{\|v_k\|^2}$$

Proof

To find c_i

How about orthonormal basis?

$$u \cdot v_{i} = (c_{1}v_{1} + c_{2}v_{2} + \dots + c_{i}v_{i} + \dots + c_{k}v_{k}) \cdot v_{i}$$

$$= c_{1}v_{1} \cdot v_{i} + c_{2}v_{2} \cdot v_{i} + \dots + c_{i}v_{i} \cdot v_{i} + \dots + c_{k}v_{k} \cdot v_{i}$$

$$= c_{i}(v_{i} \cdot v_{i}) = c_{i}||v_{i}||^{2} \qquad c_{i} = \frac{u \cdot v_{i}}{||v_{i}||^{2}}$$

Example

$$[u]_S = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

• Example: $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for R^3

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$$

Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$.

Outline

Orthogonal/Orthonormal Basis

Orthogonal Decomposition Theory

How to find Orthogonal Basis

Orthogonal Basis

Let $\{u_1, u_2, \dots, u_k\}$ be a basis of a subspace W. How to transform $\{u_1, u_2, \dots, u_k\}$ into an orthogonal basis $\{v_1, v_2, \dots, v_k\}$?

Gram-Schmidt Process

Then $\{v_1, v_2, \dots, v_k\}$ is an orthogonal basis for W

Example

 $\mathbf{v}_1 = \mathbf{u}_1$

 $S = \{u_1, u_2, u_3\}$ Is a basis for subspace W

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 $u_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ $u_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$ (independent vectors)

Then $S' = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for W.

$$S'' = \{\mathbf{v}_1, \mathbf{v}_2, 4\mathbf{v}_3\}$$
 is also an orthogonal basis.

$$\mathbf{v}_2 = \mathbf{u}_2 - rac{\mathbf{u}_2 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{||\mathbf{v}_2||^2} \mathbf{v}_2$$

Visualization

https://www.youtube.com/watch?v=Ys28-Yq21B8

$$\mathbf{v}_{1} = \mathbf{u}_{1},$$

$$\mathbf{v}_{2} = \mathbf{u}_{2} - \frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1},$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} - \frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2},$$

$$\vdots$$

$$\mathbf{v}_{k} = \mathbf{u}_{k} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{2}}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{k-1}}{||\mathbf{v}_{k-1}||^{2}} \mathbf{v}_{k-1}$$

How to prove $\{v_1, v_2, \dots, v_k\}$ is an <u>orthogonal</u> basis of W $\{v_1\}$ is orthogonal $\{v_1, v_2, \dots, v_{n-1}\}$ is orthogonal $\Rightarrow \{v_1, v_2, \dots, v_{n-1}, v_n\}$ is orthogonal $v_n \cdot v_i = 0$? (i < n) $v_n \cdot v_i = u_n \cdot v_i - \frac{u_n \cdot v_i}{\|v_i\|^2} v_i \cdot v_i = 0$

$$\mathbf{v}_{1} = \mathbf{u}_{1},$$

$$\mathbf{v}_{2} = \mathbf{u}_{2} - \frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1},$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} - \frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2},$$

$$\vdots$$

$$\mathbf{v}_{k} = \mathbf{u}_{k} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{2}}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{u}_{k} \cdot \mathbf{v}_{k-1}}{||\mathbf{v}_{k-1}||^{2}} \mathbf{v}_{k-1}$$

How to prove $\{v_1, v_2, ..., v_k\}$ is an orthogonal <u>basis of W</u> Independent? nonzero?

$$\{v_1\} \text{ is non-zero set } \\ \{v_1,v_2,\dots,v_{n-1}\} \text{ non-zero set } \\ \blacktriangleright \{v_1,v_2,\dots,v_{n-1},v_n\} \text{ non-zero set } \\ Span\{v_1,\dots,v_{n-1}\} \\ = Span\{u_1,\dots,u_{n-1}\} \\ u_n \in Span\{u_1,\dots,u_{n-1}\} \\ u_n \in Span\{u_1,\dots,u_{n-1}\} \\ u_n \in Span\{u_1,\dots,u_{n-1}\} \\$$