Rank and Nullity
秩
零度

Rank and Nullity

- The rank of a matrix is defined as the maximum number of linearly independent columns
- Nullity = Number of columns - rank

Rank and Nullity

$$
A=\left[\begin{array}{lll}
1 & 3 & 10 \\
2 & 6 & 20 \\
3 & 9 & 30
\end{array}\right] \quad \begin{aligned}
& \text { Rank } A=?, \text { Nullity } A=? \\
& \text { 以下是最土炮的作法 }
\end{aligned}
$$

$$
\underset{\text { dependent }}{\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right],\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]\right\}} \underset{\text { dependent }}{\left\{\begin{array}{l}
\left.\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\}
\end{array} \underset{\text { dependent }}{\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]\right\}}\right.} \underset{\text { dependent }}{\left\{\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right],\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]\right\}}
$$

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]\right\}, \begin{aligned}
& \text { Rank } A=1 \\
& \text { Nullity } A=2
\end{aligned}
$$

independent independent independent

Rank and Nullity

$$
A=\left[\begin{array}{ccc}
-3 & 2 & -1 \\
7 & 9 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { Rank } A=?
$$

Assume the three columns are independent

If A is a mxn matrix (n columns)

Columns of A are independent

Rank $A=n$

Nullity A = 0

$$
A=\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 6 & 8
\end{array}\right] \quad \begin{aligned}
& \text { Rank } A=? \\
& \text { Nullity } A=?
\end{aligned}
$$

$\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\} \quad A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad \begin{aligned} & \text { Rank } A=? \\ & \text { Nullity } A=?\end{aligned}$

$$
A=\left[\begin{array}{ll}
0 & 3 \\
0 & 5
\end{array}\right]
$$

$$
A=\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

Rank $A=$?
Nullity $A=$?
Rank $A=$?
Nullity $A=$?

$A \mathrm{x}=\mathrm{b}$
 Summary
 $$
A: m \times n \quad x \in R^{n} \quad b \in R^{m}
$$

Is \boldsymbol{b} a linear combination of columns of A ?

Is b in the span of the columns of A ?

Unique solution

