Subspace

Subspace

- A vector set V is called a subspace if it has the following three properties:
-1. The zero vector \mathbf{O} belongs to V
- 2. If \mathbf{u} and \mathbf{w} belong to \mathbf{V}, then $\mathbf{u}+\mathbf{w}$ belongs to V

Closed under (vector) addition

- 3. If \mathbf{u} belongs to V , and c is a scalar, then $\mathrm{c} \mathbf{u}$ belongs to V

Closed under scalar multiplication

$2+3$ is linear combination

Examples

$W=\left\{\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right] \in \mathcal{R}^{3}: 6 w_{1}-5 w_{2}+4 w_{3}=0\right\}$ Subspace?
Property $1.0 \in W \quad \square 6(0)-5(0)+4(0)=0$
Property 2. $\mathbf{u}, \mathbf{v} \in W \Rightarrow \mathbf{u}+\mathbf{v} \in W$

$$
\begin{aligned}
& \mathbf{u}=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]^{T}, \mathbf{v}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]^{T} \quad \mathbf{u}+\mathbf{v}=\left[\begin{array}{lll}
u_{1}+v_{1} & u_{2}+v_{1} & u_{3}+v_{1}
\end{array}\right]^{T} \\
& 6\left(u_{1}+v_{1}\right)-5\left(u_{2}+v_{2}\right)+4\left(u_{3}+v_{3}\right) \\
& =\left(6 u_{1}-5 u_{2}+4 u_{3}\right)+\left(6 v_{1}-5 v_{2}+4 v_{3}\right)=0+0=0
\end{aligned}
$$

Property 3. $\mathbf{u} \in W \Rightarrow c \mathbf{u} \in W$

$$
6\left(c u_{1}\right)-5\left(c u_{2}\right)+4\left(c u_{3}\right)=c\left(6 u_{1}-5 u_{2}+4 u_{3}\right)=c 0=0
$$

Examples

$$
\left.\begin{array}{l}
V=\{\mathbf{c w} \mid c \in R\} \quad \text { Subspace? } \\
\mathcal{S}_{1}=\left\{\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \in \mathcal{R}^{2}: w_{1} \geq 0 \text { and } w_{2} \geq 0\right\} \\
\text { Subspace? } \quad \mathbf{u} \in \mathrm{S}_{1}, \mathbf{u} \neq \mathbf{0} \Rightarrow-\mathbf{u} \notin \mathrm{S}_{1}
\end{array}\right\} \begin{aligned}
& \mathcal{S}_{2}=\left\{\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \in \mathcal{R}^{2}: w_{1}^{2}=w_{2}^{2}\right\} \\
& \text { Subspace? }\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \in S_{2} \text { but }\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \notin S_{2}
\end{aligned}
$$

\{0\} Subspace? zero subspace

Subspace v.s. Span

- The span of a vector set is a subspace

$$
\text { Let } S=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\} \quad V=\operatorname{Span} S
$$

Property 1. $\mathbf{0} \in V$
Property 2. $u, v \in V, u+\boldsymbol{v} \in \mathrm{V}$

Property 3. $\boldsymbol{u} \in V, \boldsymbol{c} \boldsymbol{u} \in V$

Column Space and Row Space

- Column space of a matrix A is the span of its columns. It is denoted as Col A.

$$
A \in \mathcal{R}^{m \times n} \Rightarrow \mathrm{Col} A=\left\{A \mathbf{v}: \mathbf{v} \in \mathcal{R}^{n}\right\}
$$

If matrix A represents a function

Col A is the range of the function

- Row space of a matrix A is the span of its rows. It is denoted as Row A.

$$
\text { Row } A=\operatorname{Col} A^{T}
$$

Column Space = Range

- The range of a linear transformation is the same as the column space of its matrix.

Linear Transformation

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2}+x_{3}-x_{4} \\
2 x_{1}+4 x_{2}-8 x_{4} \\
2 x_{3}+6 x_{4}
\end{array}\right]
$$

Standard matrix

$$
\begin{aligned}
A=\left[\begin{array}{lllc}
1 & 2 & 1 & -1 \\
2 & 4 & 0 & -8 \\
0 & 0 & 2 & 6
\end{array}\right] \Rightarrow & \operatorname{Range} \text { of } T= \\
& \operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
-8 \\
6
\end{array}\right]\right\}
\end{aligned}
$$

RREF

- Original Matrix A v.s. its RREF R
- Columns:
- The relations between the columns are the same.
- The span of the columns are different.

$$
\operatorname{Col} \mathrm{A} \neq \operatorname{Col} R
$$

- Rows:
- The relations between the rows are changed.
- The span of the rows are the same.

$$
\text { Row } \mathrm{A}=\text { Row } R
$$

Consistent

$\mathrm{A}=\mathrm{b}$ have solution (consistent)

b is the linear combination of columns of A
b is in the span of the columns of A
b is in $\operatorname{Col} A$

$$
A=\left[\begin{array}{cccc}
1 & 2 & 1 & -1 \\
2 & 4 & 0 & -8 \\
0 & 0 & 2 & 6
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \in \operatorname{Col} A ? \mathbf{v}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] \in \operatorname{Col} A ?
$$

Solving $\mathrm{Ax}=\mathrm{u}$
$\operatorname{RREF}([\mathrm{A} \quad \mathrm{u}])=\left[\begin{array}{ccccc}1 & 2 & 0 & -4 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & (1)\end{array}\right] \operatorname{RREF}([\mathrm{A} \mathbf{v}])=\left[\begin{array}{ccccc}1 & 2 & 0 & -4 & 0.5 \\ 0 & 0 & 1 & 3 & 1.5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Null Space

- The null space of a matrix A is the solution set of $A x=0$. It is denoted as Null A.

Null $A=\left\{\mathbf{v} \in \mathrm{R}^{n}: A \mathbf{v}=\mathbf{0}\right\}$
The solution set of the homogeneous linear equations $A \mathbf{v}=0$.

- Null A is a subspace

A linear function is
one-to-one
Null space only
contain 0

Null Space - Example

$$
T: \mathcal{R}^{3} \rightarrow \mathcal{R}^{2} \text { with } T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2}+2 x_{3} \\
-x_{1}+x_{2}-3 x_{3}
\end{array}\right]
$$

Find a generating set for the null space of T.
The null space of T is the set of solutions to $A \mathbf{x}=\mathbf{0}$

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -3
\end{array}\right] \longmapsto R=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
x_{1}=x_{2} \\
x_{3}=0
\end{gathered} \quad \square\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

a generating set for the null space

