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Prologue
• Quantum information science have demonstrated advantages in several fields:

‒ Computing: speed-ups certain computational tasks where no classical methods can do.
‒ Communication: entanglement-assisted communication increases channel capacity.
‒ Cryptography: extending classical key with information-theoretic security.
‒ Sensing: more accurate estimation, positioning, and synchronization.
‒ Simulation: simulating complex reactions that are formidable for classical computers.

• Any other applications/advantages of quantum information technologies?
• Artificial intelligence and machine learning tasks are essentially implemented on a 

physical device. How about doing the job on a quantum computational device?
• Can quantum information science revolutionize the way of learning from data?



Part I – Basics of Quantum Information Processing 



Brief History of Quantum Computation (1/2)
• Paul Benioff (1979): 

“The computer as a physical system:  A microscopic quantum mechanical 
Hamiltonian model of computers as represented by Turing machines.

• Feynman (1981): “Why don’t we store information on individual particles that 
already follow the very rules of quantum mechanics that we try to simulate?

• David Deutsch (1985) described what a quantum algorithm would look like, and 
Richard Jozsa (1992) demonstrated a deterministic quantum advantage.

• Umesh Vazirani and Ethan Bernstein (1993) pushed it forward (bounded error).
• Daniel Simon (1994) demonstrated an exponential speedup.

“Nature Isn’t classical, dammit, and if you want to make a 
simulation of nature, you’d better make it quantum mechanical.” 

Richard Feynman 
(1918-1988)



Brief History of Quantum Computation (2/2)
• Seth Lloyd (1993) described a method of building a working quantum computer.  
• Peter Shor (1994) invented a polynomial-time quantum algorithm for factoring.
• David DiVincenzo (1996) outlined the key criteria of a quantum computer.
• Isaac Chuang et al. (2001) implemented Shor’s algorithm  on a nuclear magnetic 

resonance (NMR) system to factor the number 15 as a demonstration.
⋮

• → A variety of interdisciplinary fields such as
Quantum Computation, Quantum Communication,
Quantum Simulation, Quantum Sensing, Quantum Chemistry, etc. 

Peter Shor (1959 -)
Quantum Information Science
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A Statistical Framework of Quantum Theory 

Preparation Evolution Measurement Data

 Preparation:  A preparation procedure determines the state of a system.

 Evolution: How is a quantum state evolving? 

 Measurement:  A measurement procedure produces some random outcomes. 



The Quantum Bit (Qubit)
• Definition: A qubit is the fundamental unit of quantum information.

• A quantum register (a quantum system) is a collection of qubits we use for computation.

• Physically, a qubit can be a realized by a two-state (two-level) quantum-mechanical system 
e.g. a spinning electron or polarized light.

It is a superposition state represented by a linear combination of |0⟩ and |1⟩ in      :     



Vector Representation (Dirac Notation) for a Qubit

•

• Bra–Ket notation: the Ket vectors

• Inner product: 

Paul Dirac (1902-1984)



Bloch-Sphere Representation for a Qubit

Classical Bit Quantum Bit



Quantum Measurement

• A quantum measurement (with respect to the computational basis            
) gives you the readout of ‘0’ or ‘1’ with certain probability

• The Born rule:

• After measurement, a qubit is forced to collapse (irreversibly) through projection to one 
of the basis 

Max Born (1882-1970)



Single-Qubit Gates (1/2)
• In gate-based quantum computers, a quantum operation is a unitary operation.

Matrix representation

• The quantum X gate is given by the Pauli X matrix
→ It is called the NOT gate or the “bit flip” gate since it rotates 𝜋𝜋 around the x-axis.

• The quantum Z gate rotates 𝜋𝜋 around the z-axis
→ It is called the “phase flip” gate

Wolfgang Pauli (1900-1958)

• The quantum Y gate rotates 𝜋𝜋 around the y-axis.
→ It does the bit flip and phase flip at the same time.



Single-Qubit Gates (2/2)
• The Hadamard gate changes the basis from { 0 , 1 } to { + , − }
→ It creates superposition; and it is self-inverse:

Jacques Hadamard (1865-1963)

• The quantum 𝑅𝑅𝜑𝜑𝑍𝑍 gate rotates 𝜑𝜑 around the z-axis

• The quantum 𝑅𝑅𝜑𝜑𝑋𝑋 gate rotates 𝜑𝜑 around the x-axis

• The quantum 𝑅𝑅𝜑𝜑𝑌𝑌 gate rotates 𝜑𝜑 around the y-axis



Just a bit math…
• Definition. Tensor product of matrices



More Qubits – Quantum Entanglement (1/2)
• General 2-qubit state: Probability amplitude

• A two-qubit is represented by a unit vector in four-dimensional linear space

• Tensor product: 

→ The computational basis: 



More Qubits – Quantum Entanglement (1/2)
• Entangled state: there are states that cannot be expressed as the product form, i.e.

• The Bell states:

John S. Bell (1928-1990)Einstein, Podolsky, and Rosen
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Multi-Qubit Gates (1/3)
• A qubit gate has a 2 by 2 unitary matrix in a given basis. 
→ For an n-qubit gate, the matrix is 2𝑛𝑛 by 2𝑛𝑛 (tensor product of matrices).

A two-qubit gate 𝐻𝐻⊗𝐻𝐻



Multi-Qubit Gates (2/3)
• The previous example is a 2-qubit gate of the product form.

• Controlled-NOT gate:

• Used to prepare the Bell state: 

Ex. 



Multi-Qubit Gates (3/3)
• Toffoli gate (CCNOT gate)
→ universal classically

• Swap gate

• Universal quantum gates sets: {CNOT, T, H} or {CCNOT, H}

Truth Table



Elementary Quantum Gates
• Pauli gates

• Swap gate 𝜓𝜓 𝜙𝜙 ↦ 𝜙𝜙 |𝜓𝜓⟩

• Hadamard gates

• Rotation gates

• CNOT gate • Toffoli (CCNOT) gate)

• Controlled-𝑍𝑍 gates

Phase gate



Gate-Based Quantum Computation



Efficiently Preparing Superposition States

• We can create a superposition of exponentially many terms with only a linear
number of the Hadamard gates.



The Quantum Oracle & Quantum Parallelism

• The quantum oracle for any Boolean function 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑚𝑚 is given by the 
quantum gate 𝑈𝑈𝑓𝑓: 𝑥𝑥 𝑦𝑦 ↦ 𝑥𝑥 𝑦𝑦⊕ 𝑓𝑓 𝑥𝑥 , ∀𝑥𝑥 ∈ 0,1 𝑛𝑛,∀𝑦𝑦 ∈ 0,1 𝑚𝑚.

• We set the input register to an equal superposition of all 2𝑛𝑛 possible 𝑛𝑛-bit strings:

• In one run of the protocol, we obtain a final state with depends on all of the 
function values. On the other hand, we would need exponentially many queries to 
have full access to the function 𝑓𝑓.



Quantum Computing – Unstructured Search 

 Searching in an unstructured list with size N

→ Lov Grover (1996) proposed a quantum algorithm requires ≈ 𝑁𝑁 queries

The best classical algorithm requires number of queries proportional to N

Lov Grover (1961 –)

#1 #2 #3 ⋯ #𝑁𝑁



Quantum Computing – Factorization

Peter Shor (1959 -)

• Integer Factorization used in the RSA cryptography system

→ Peter Shor (1994) invented a polynomial-time quantum algorithm

Example: 463570199875051

≈ 249

= 27644437×16769023

The computational complexity of the best known classical algorithm scales 
exponentially in the number of bits of the integer. 

• Other cryptosystem such as the Diffie–Hellman key exchange security (based on the 
hardness of the discrete logarithm problem) and the Elliptic curve cryptography can be 
broke in polytime by applying Shor’s idea.



Relations – A Glimpse of The Complexity Zoo

PSPACE

NP-Complete
NP

P

BPPBQP

𝑛𝑛 × 𝑛𝑛 Chess/Go

SAT, 𝑛𝑛 × 𝑛𝑛 Sudoku
Travelling salseman

Graph Isomorphism

Integer factorization,
Discrete logarithm

Multiplication, 
Primality, etc.

Efficiently solvable by classical computerEfficiently solvable by quantum computer







Part II – Various Models of Quantum ML



Brief History of Quantum Machine Learning (1/4)
• In 2000’s – early explorations; mostly on detection & estimation instead of learning.
• The term ‘quantum machine learning’ was coined around 2013 (arXiv:1307.0411).
→ HHL algorithm for approximately solve linear equations with a quantum RAM.



Brief History of Quantum Machine Learning (2/4)
• Some critiques about quantum speeding-up ML since 2015.
→ Not just about practically building a quantum compute but caveats of using it.

• Two types of quantum neural networks (QNNs) in 2018.
‒ Unitary feed-forward network and Quantum Boltzmann machine



Brief History of Quantum Machine Learning (3/4)
• Finding applications, advantages, and preliminary analysis of QNNs.



Brief History of Quantum Machine Learning (4/4)
• Barren plateaus (vanishing gradients), quantum No-Free-Lunch theorem, etc…



Four Categories

[E. Aïmeur, G. Brassard, S. Gambs, “Machine learning in a quantum world,” Advances in Artificial Intelligence, 2006.]
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• CC: Learning classical data with   
classical machine – Classical ML. 

• QC: Learning quantum objects with
classical ML (e.g. matrix concentrations).

‒ S. Aaronson’07 – Learning quantum states.
‒ H.-C. Cheng, M.-H. Hsieh, P.-C. Yeh’15 –

Learning quantum measurements.

• CQ: Processing classical datasets using 
quantum computing – Lloyd et al.   

• QQ: Processing “quantum data” using  
quantum machine – largely open.   



unknown target function

training samples

hypothesis set

learning algorithm

unknown distribution

final hypothesis

training

testing

• binary classification:
• multiclass classification:
• regression:
• unsupervised:

Different Output Space        

Statistical Learning Framework



unknown target

unknown data 
(for training & testing)

learning algorithm 
& hypothesis set

physical processors

Categories from The Learning Framework (1/2)

circuit-level
algorithms

 Data & Goal
 classical or quantum
 hybrid

 Learning Mechanism
 classical ML algorithms
 quantum variational circuits

 Physical device for 
implementation
 classical CPU/GPU/TPU
 quantum processors



Categories from The Learning Framework (2/2)

Data & goal Learning mechanism Physical device Examples

classical classical classical classical ML

classical classical quantum speedup running time

classical quantum classical VQC & simulator

classical quantum quantum VQC & QPU

quantum classical classical tomography & simulator

quantum classical quantum tomography & QPU

quantum quantum classical quantum simulation 
VQC? & simulator

quantum quantum quantum quantum Boltzmann 
machine?

Today

Today



Part III – ML with Quantum Algorithmic Speeding-up

Data & goal Learning mechanism Physical device

classical classical quantum



Flowchart of Classical ML with Quantum Algorithm

Encoding

Quantum machine 
learning algorithm

Read out

Data set 𝒟𝒟: input 𝑥𝑥

Prediction 𝑦𝑦

Quantum

Data set 𝒟𝒟: input 𝑥𝑥

Prediction 𝑦𝑦

Classical

Classical machine 
learning algorithm

State preparation

Quantum evolution

measurement

Quantum system



Information Encoding
• To learn from classical data, we need to load data from classical memory into the 

quantum computer; this process is called state preparation in QML.
• In the training phase, we consider data set 𝒟𝒟 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 of 𝑁𝑁–dimensional real 

feature vectors.

Encoding Number of qubits Runtime of 
state preparation Input feature

Basis 𝑁𝑁 𝑂𝑂(𝑀𝑀𝑁𝑁) Binary

Amplitude log𝑁𝑁 ⁄𝑂𝑂(𝑀𝑀𝑁𝑁) 𝑂𝑂 log𝑀𝑀𝑁𝑁 Continuous

Qsample 𝑁𝑁 ⁄𝑂𝑂(𝑀𝑀𝑁𝑁) 𝑂𝑂 log𝑀𝑀𝑁𝑁 Binary

Hamiltonian log𝑁𝑁 ⁄𝑂𝑂(𝑀𝑀𝑁𝑁) 𝑂𝑂 log𝑀𝑀𝑁𝑁 Continuous



Basis Encoding (1/2)
• Assume each data is 𝑁𝑁-dimensional bit string, i.e. 𝑥𝑥𝑚𝑚 ∈ 0,1 𝑁𝑁 for 𝑥𝑥𝑚𝑚 ∈ 𝒟𝒟:

𝑥𝑥𝑚𝑚 ↦ |𝑥𝑥𝑚𝑚⟩ 𝒟𝒟 ↦ 𝒟𝒟 ≔ 1
𝑀𝑀
∑𝑚𝑚=1
𝑀𝑀 |𝑥𝑥𝑚𝑚⟩

• For example, given 𝒟𝒟 = 𝑥𝑥1, 𝑥𝑥2 = 0101, 1110 , then 𝒟𝒟 = 1
2

0101 + |1110⟩ .

0101 = 1
0 ⊗ 0

1 ⊗ 1
0 ⊗ 0

1 = 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 𝑇𝑇

= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 𝑇𝑇1110 = 0
1 ⊗ 0

1 ⊗ 0
1 ⊗ 1

0

⇒ |𝒟𝒟⟩ = 0, 0, 0, 0, 0, ⁄1 2 , 0, 0, 0, 0, 0, 0, 0, 0, ⁄1 2 , 0
𝑇𝑇



Basis Encoding (2/2)
• Preparation in time 𝑂𝑂 𝑀𝑀𝑁𝑁 by Ventura–Martinez, and Trugenberger. 
• Approach by the Quantum random access memory, in time 𝑂𝑂 log𝑁𝑁 .

QRAM: 1
𝑀𝑀
∑𝑚𝑚=1
𝑀𝑀 𝑚𝑚 |0⋯ 0⟩ ↦ 1

𝑀𝑀
∑𝑚𝑚=1
𝑀𝑀 |𝑚𝑚⟩|𝑥𝑥𝑚𝑚⟩

• However, an efficient hardware implementation is still an open challenge.



Computing in Basis Encoding
• Suppose we have a Boolean logic gate 𝑓𝑓: 0,1 𝑁𝑁 → 0,1 giving binary label to each 

data 𝑥𝑥𝑚𝑚. Then, this can be implemented by  (universal) quantum Toffoli gates.
This is called a quantum oracle 𝑈𝑈𝑓𝑓: 𝑥𝑥 |0⟩ ↦ |𝑥𝑥⟩ 𝑓𝑓 𝑥𝑥 .

• Quantum parallelism: 

• To read-out the state of the qubits, we have to measure it (quantum tomography).
→ Frequentist estimator via multiple shots of measurements.

• Caveats: (i) large amounts of qubits needed; (ii) realizing a quantum RAM.

𝑈𝑈𝑓𝑓:
1
𝑀𝑀
�

𝑚𝑚=1

𝑀𝑀
𝑥𝑥𝑚𝑚 |0⋯ 0⟩ ↦

1
𝑀𝑀
�

𝑚𝑚=1

𝑀𝑀
𝑥𝑥𝑚𝑚 𝑓𝑓 𝑥𝑥𝑚𝑚



Amplitude Encoding
• For simplicity, suppose each feature vector 𝑥𝑥𝑚𝑚 = (𝑥𝑥𝑚𝑚,1, … , 𝑥𝑥𝑚𝑚,𝑁𝑁) is normalized, i.e. 
∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑚𝑚,𝑖𝑖

2 = 1. (This condition can be removed by non-expansive manipulations.)
• Then, we can prepare the quantum state |𝑥𝑥𝑚𝑚⟩ by using 𝑛𝑛 = log𝑁𝑁 quantum bits:

𝑥𝑥𝑚𝑚 ↦ 𝑥𝑥𝑚𝑚 ≔ ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑚𝑚,𝑖𝑖 𝑖𝑖 𝒟𝒟 ↦ 𝒟𝒟 ≔ 1
𝑀𝑀
∑𝑚𝑚=1
𝑀𝑀 ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑚𝑚,𝑖𝑖|𝑚𝑚⟩ 𝑖𝑖

• State preparation in linear time: ⁄𝑂𝑂(𝑀𝑀𝑁𝑁) 𝑂𝑂 log𝑀𝑀𝑁𝑁 .
• For sufficiently uniform vectors, the preparation may be efficiently done via qRAM.



Computing in Amplitude Encoding (1/2)
• Clustering: Assigning a vector 𝑢𝑢 ∈ ℂ𝑁𝑁 to two groups: �⃗�𝑣𝑚𝑚 𝑚𝑚=1

𝑀𝑀 and 𝑤𝑤𝑚𝑚 𝑚𝑚=1
𝑀𝑀 .

• Classical approach: to compare the distance 𝑢𝑢 − 1
𝑀𝑀
∑𝑚𝑚 �⃗�𝑣𝑚𝑚

2
.

Takes time 𝑂𝑂 poly 𝑀𝑀𝑁𝑁 .
• The swap test for computing the inner product.

← involving evaluating inner product ⟨𝑢𝑢, �⃗�𝑣𝑚𝑚⟩

The controlled-swap gate



Computing in Amplitude Encoding (2/2)
• The clustering can be done in 𝑂𝑂 log𝑀𝑀𝑁𝑁 in a quantum computer.

Exponential speed-up!• Caveats:
‒ If wanted to read-out the value of any specific entry 𝑥𝑥𝑖𝑖 of 𝑥𝑥 = ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥𝑖𝑖|𝑖𝑖⟩, then in 

general would require repeating the algorithm roughly 𝑂𝑂 𝑁𝑁 times, this then kills 
the exponential speed-up.

‒ Once again, if preparing the amplitude encoding
in 𝑥𝑥 requires super-logarithmic time, then the speed-up unfortunately vanishes.

← measurement outcome 𝑥𝑥𝑖𝑖 with Pr 𝑥𝑥𝑖𝑖2



Support Vector Machine with Quantum RAM
• The Support Vector Machine (SVM) can be formulated as a quadratic programming 

problem, which can be solved in time 𝑂𝑂 poly 𝑀𝑀,𝑁𝑁 , i.e.
max
𝛼𝛼

𝐿𝐿 �⃗�𝛼 = �⃗�𝛼, �⃗�𝑦 − 1
2
�⃗�𝛼,𝐾𝐾�⃗�𝛼 :∑𝑗𝑗=1𝑀𝑀 𝛼𝛼𝑗𝑗 = 0 , 𝑦𝑦𝑗𝑗𝛼𝛼𝑗𝑗 ≥ 0 , 𝐾𝐾 𝑖𝑖𝑗𝑗 ≔ 𝑘𝑘 �⃗�𝑥𝑖𝑖 , �⃗�𝑥𝑗𝑗 .

• Efficient inner product evaluation via quantum algorithm takes 𝑂𝑂 poly 𝑀𝑀 log𝑁𝑁 .
• Using a non-sparse matrix exponentiation technique for approximating  the kernel 

matrix inverse requires 𝑂𝑂 log𝑀𝑀𝑁𝑁 . ← Exponential speed-up!

• Caveats:
‒ Works with non-sparse kernel matrix, which has 

a small condition number (as in the HHL).
‒ Again, the quantum RAM is indispensable.



Support Vector Machine without Quantum RAM (1/3)
• Rotation encoding: Φ: �⃗�𝑥 ↦ |Φ �⃗�𝑥 ⟩ mapping the data to the quantum feature space. 

• To implement the feature map, a rotation 𝑍𝑍 gate 𝑈𝑈Φ �⃗�𝑥 is used in the ansatz 𝑈𝑈Φ �⃗�𝑥 𝐻𝐻
e.g. 𝑈𝑈Φ 𝑥𝑥 = e−i𝑥𝑥𝑍𝑍 for 1-bit 𝑥𝑥; 𝑈𝑈Φ 𝑥𝑥 = ei 𝑥𝑥1𝑍𝑍1+𝑥𝑥2𝑍𝑍2+ 𝜋𝜋−𝑥𝑥1 𝜋𝜋−𝑥𝑥2 𝑍𝑍1𝑍𝑍2 for 2-bit �⃗�𝑥. 

Ansatz

[Havlicek et al., “Supervised learning with quantum enhanced feature spaces,” Nature, 2018 ]



Support Vector Machine without Quantum RAM (2/3)

• With the quantum feature map, the classical kernel is 𝑘𝑘 �⃗�𝑥𝑖𝑖 , �⃗�𝑥𝑗𝑗 = Φ �⃗�𝑥𝑖𝑖 Φ �⃗�𝑥𝑗𝑗
2

.
• Such a kernel (constructed from the above ansatz) is efficiently implementable via 

short-depth quantum circuits, but believed classically hard.



Support Vector Machine without Quantum RAM (3/3)



Part IV – Learning with Quantum Machines

Data & goal Learning mechanism Physical device

classical quantum classical/quantum



Variational (Parametric) Quantum Circuits
• The QNN is characterized by a unitary ansatz 𝑈𝑈 𝜃𝜃 ≔ e−i𝐻𝐻𝑛𝑛𝜃𝜃𝑛𝑛 ⋯ e−i𝐻𝐻𝑛𝑛𝜃𝜃𝑛𝑛, where 
𝜃𝜃 = 𝜃𝜃1, … , 𝜃𝜃𝑛𝑛 are the parameters we aim to learn and 𝐻𝐻𝑖𝑖 are Hermitian operators.

• Goal: find a good assignment of parameters (e.g. via gradient descent) in terms of 
an objective function 𝑓𝑓𝜃𝜃 𝑥𝑥 ≔ ⟨𝜓𝜓𝜃𝜃,𝑥𝑥 Π⊗ 𝐼𝐼 𝜓𝜓𝜃𝜃,𝑥𝑥⟩, where 𝜓𝜓𝜃𝜃,𝑥𝑥 ≔ 𝑈𝑈 𝜃𝜃 𝑉𝑉 𝑥𝑥 |0⟩. 

|0⟩

|0⟩

⋮ ⋮

|0⟩
|0⟩
|0⟩

𝑉𝑉(𝑥𝑥) 𝑈𝑈(𝜃𝜃)
hidden layer

visible layer



Hybrid Training for Variational Algorithms
• Idea: Use the quantum machine to compute the objective function 𝑓𝑓 𝜃𝜃 𝑡𝑡 , 

and then use a classical device to compute better circuit parameters 𝜃𝜃 𝑡𝑡+1 with 
respect to the objective. Iterate the routine until the objective is optimized.

Quantum device

𝑈𝑈(𝜃𝜃)
|0⟩

|0⟩

⋮ ⋮
𝜃𝜃(𝑡𝑡)

𝜃𝜃(𝑡𝑡+1)

Classical device

𝜃𝜃(𝑡𝑡+1)

𝑓𝑓𝜃𝜃 𝑡𝑡+1

analytical or numerical 
gradient



Optimization Methods (1/2)
• Quantum Approximate Optimization Algorithm (QAOA) for the MaxCut Problem.
→ heuristic, highly problem-specific, could be computationally expensive.

• Iterative derivative-free methods (e.g. the PSO).
• Numerical gradient (finite difference).
• Analytical gradient (parameter shift rule).

‒ In general, 𝜕𝜕𝑈𝑈(𝜃𝜃) might not be unitary.
‒ By rotation gate, 𝜕𝜕𝑈𝑈(𝜃𝜃) can be expressed

as linear combinations of unitaries;
hence computable by circuits.

‒ Other gradient methods.



Optimization Methods (2/2)



Various Ansatzs for QNNs (1/2)
• The dimension of the parameter space is typically mush smaller than the space of all 

unitary operators (e.g. 𝑂𝑂 22𝑛𝑛 for 𝑛𝑛-qubits).
• Goal: designing an ansatz for the QNN such that it is rich enough to allow the 

parameterized circuit to approximate the solution with as few parameters as possible.
• It is desirable that the qubit-efficient circuits is hard for classical simulation –

the objective function cannot be efficiently computed on a classical computer.
(But it does not rule out the possibility that there are other efficient classical ways.)



Various Ansatzs for QNNs (2/2)



Caveat: Barren Plateus
• On one hand, we desire entanglement between qubits to exploit full quantumness.
• On the other hand, excess of entanglement between visible and hidden layers may 

cause barren plateaus; hence both gradient descent and gradient methods fail.
• Any trade-off? How to quantify/characterize them?



Various Quantum Software Packages



Epilogue



Conclusions and Outlooks
• There are other QML models that we haven’t discussed in the lecture:

‒ Quantum Boltzmann machines ⁄e− ∑𝑖𝑖 𝜃𝜃𝑖𝑖𝐻𝐻𝑖𝑖 𝑍𝑍(𝜃𝜃).

‒ Quantum example oracle 0𝑛𝑛 ↦ ∑𝑥𝑥 𝑝𝑝 𝑥𝑥 𝑥𝑥 |𝑓𝑓 𝑥𝑥 ⟩. 
‒ Quantum PAC-learning model.

• QML is still at its very early stage of research. How to demonstrate quantum 
advantages, to provide theoretical evidence, and to identify the field it can apply?
On the other hand, can one prove that the quantum circuit learning is just a lure?

• Conversely, existing ML techniques could help quantum information development.
• Even if QML does not help classical problems, it might help quantum problems.
• My ultimate goal: to invent a truly quantumly-meaning learning paradigm.

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

ℎ2ℎ1

Hao-Chung Cheng (鄭皓中)
haochung@ntu.edu.tw
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