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1. PartI - Basics of Quantum Information Processing



Quantum Machine Learning?




Prologue

* Quantum information science have demonstrated advantages in several fields:
- Computing: speed-ups certain computational tasks where no classical methods can do.
- Communication: entanglement-assisted communication increases channel capacity.
- Cryptography: extending classical key with information-theoretic security.
- Sensing: more accurate estimation, positioning, and synchronization.

- Simulation: simulating complex reactions that are formidable for classical computers.
* Any other applications/advantages of quantum information technologies?

» Artificial intelligence and machine learning tasks are essentially implemented on a
physical device. How about doing the job on a quantum computational device?

* Can quantum information science revolutionize the way of learning from data?



Part I — Basics of Quantum Information Processing



Brief History of Quantum Computation (1/2)

e Paul Benioff (1979):
“The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines.

Richard Feynman
(1918-1988)

* Feynman (1981): “Why don't we store information on individual particles that
already follow the very rules of quantum mechanics that we try to simulate?

“Nature Isn't classical, dammit, and if you want to make a
simulation of nature, youd better make it quantum mechanical.”

* David Deutsch (1985) described what a quantum algorithm would look like, and
Richard Jozsa (1992) demonstrated a deterministic quantum advantage.

* Umesh Vazirani and Ethan Bernstein (1993) pushed it forward (bounded error).

* Daniel Simon (1994) demonstrated an exponential speedup.



Brief History of Quantum Computation (2/2)

* Seth Lloyd (1993) described a method of building a working quantum computer.
* Peter Shor (1994) invented a polynomial-time quantum algorithm for factoring.
* David DiVincenzo (1996) outlined the key criteria of a quantum computer.

* Isaac Chuang et al. (2001) implemented Shor’s algorithm on a nuclear magnetic
resonance (NMR) system to factor the number 15 as a demonstration.

* — A variety of interdisciplinary fields such as
Quantum Computation, Quantum Communication,
Quantum Simulation, Quantum Sensing, Quantum Chemistry, etc. .+

uantum Information Science =1 P\
Q f Peter Shor (1959 -)
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Other Quantum Processors
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Development Roadmap
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Photonics is the only
way to deliver

1,000,000

qubits

A useful quantum computer requires
at least a million qubits.

Our quantum computer will be built using the
same industrial tools that produce your
laptop.

Error correction is at the centre of everything
we do. It is the only known way to ensure
that such a complex device can function
reliably.

Thirty years ago photonic quantum computing was
believed impossible. Twenty years ago, it was proved
possible but dismissed as impractical. Today, after
numerous architectural breakthroughs and advances in
silicon photonics, PsiQuantum uniquely has a clear path

to a useful quantum computer.
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EXHIBIT 1 | Companies Assume Four Roles Across Layers of the Stack in the Quantum Computing
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Quantum Computer System Stacks
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A Statistical Framework of Quantum Theory

Preparation Evolution Measurement Data

» Preparation: A preparation procedure determines the state of a system.
» Evolution: How is a quantum state evolving?

» Measurement: A measurement procedure produces some random outcomes.



The Quantum Bit (Qubit)

* Definition: A qubit is the fundamental unit of quantum information.
It is a superposition state represented by a linear combination of |0) and |1) in C*:

¥) = al0) + bl1), a,b € €, [af? + bl = 1

* Physically, a qubit can be a realized by a two-state (two-level) quantum-mechanical system
e.g. a spinning electron or polarized light.

* A quantum register (a quantum system) is a collection of qubits we use for computation.
N

v B 0) — ES Jg & E»
0 — Circuit — +) — QC — ‘ l

0 ) S
SPIN UP SPIN DOWN SUPERPOSITION

IO) | 1 ) Both states |0) & |1)
simultaneously




Vector Representation (Dirac Notation) for a Qubit

=g = 1] = =am = [} e spr -1 |

* Bra-Ket notation: the Ket vectors |¢) = [Z] |9) = [ccl]
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Bloch-Sphere Representation for a Qubit

= [Y) = COS(%)|O> —I—Sin(g)ei‘PH), 0 € 0,7, ¢ €0, 2]

0) <« (0,¢) =1(0,0)

0
A

Classical Bit

—



Quantum Measurement

* A quantum measurement — A (with respect to the computational basis
{]0), |1) } ) gives you the readout of ‘0’ or ‘1’ with certain probability

e The Born rule: ) = al0) + b[1) — A=
Pr(o) = |02 = |[1 0] [%]| =P
Pr(1) = (1) 2 = [0 1] [%]] = of

Max Born (1882-1970)

 After measurement, a qubit is forced to collapse (irreversibly) through projection to one
of the basis



Single-Qubit Gates (1/2)

* In gate-based quantum computers, a quantum operation is a unitary operation.

* The quantum X gate is given by the Pauli X matrix 0) 9 X— 1)
— It is called the NOT gate or the “bit flip” gate since it rotates = around the x-axis.

Matrix representation

X =0+ ol = |7 ol > X100 = 7 of [o] = 1] =

* The quantum Z gate rotates 7 around the z-axis Z := |0)(0] — |1)(1
— It is called the “phase flip” gate — Z|i)) = r1]0) + roe’"T¥)|1)

* The quantum Y gate rotates  around the y-axis.

— It does the bit flip and phase flip at the same time.
Wolfgang Pauli (1900-1958)



Single-Qubit Gates (2/2) T =

* The Hadamard gate changes the basis from {|0), |1)} to {|+), |—)}
— [t creates ; and it is self-inverse: HH = T

b) < H}— 5 (10) +(=1)°[1)), be {0,1}

I 0
» The quantum R/, gate rotates ¢ around the z-axis RIX= ( i >
» The quantum R gate rotates ¢ around the x-axis RE:

* The quantum R, gate rotates ¢ around the y-axis



Just a bit math...

o . a a b b
» Definition. Tensor product of matrices A:=( % ), B:= (bt 12
az1 Qa22 ba1 b22
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More Qubits — Quantum Entanglement (1/2)

* General 2-qubit state: Probability amplitude

1) = apo|00) + ap1|01) 4+ a10|10) 4 a11|11) € C* S aiilf =1

i,7€{0,1}
* A two-qubit is represented by a unit vector in four-dimensional linear space C**?
— The computational basis: 1 0 0 0
AT AR
100) = 0 01) = 0 9.0} 0= | 14 = 0
\0/ \0/ \0/ \1/
DL £ GO (B e NG
* Tensor product: |01) = |0)®|1) = (O) ® <1> = O e i aES
1)) ox1) Ao/



More Qubits — Quantum Entanglement (1/2)

* Entangled state: there are states that cannot be expressed as the product form, i.e.

Alar),g2) € C, s.t. [¥) = |q1) @ |g2)

1 .
with % probability, @@ with > PrT obability, @@
o1 g 1 .
with 2 probability; @@ with - probability, @@
2
ed)

|<I>+> _ |OO>\‘/|'§|11> \
D+ '
V2

Einstein, Podolsky, and Rosen John S. Bell (1928-1990)



Multi-Qubit Gates (1/3)

* A qubit gate has a 2 by 2 unitary matrix in a given basis.
— For an n-qubit gate, the matrix is 2" by 2" (tensor product of matrices).

O> — H —|-> A two-qubit gate H @ H

0) — H— |+)

/1 1 1 1\
H@Q_L11®L11_11—11—1
21 -1 v\l -1/ 21 1 -1 -1

" \ IS I Sl
:»H®2|00>:l ! = [+)®|+) _
2 \1) (A B)a®b = (Aa)®(Bb)
1



Multi-Qubit Gates (2/3)

* The previous example is a 2-qubit gate of the product form.

* Controlled-NOT gate: i /(1) (1) 8 8\ I22 1 022
L/
0O 0 0 1
Ex. |1) 1) Og2 @ X
1 )
0 —— |1 0010/
* Used to prepare the Bell state: 0) — H L o)
0) B
100) 8" L (10) + 1)) @ [0) = L(]00) + [10)) “¥ET L_(jo0) + |11
Joo) = 5 ; = 2-(]00) + [11))




Multi-Qubit Gates (3/3)

* Toffoli gate (CCNOT gate)
— universal classically

000) > [000)
001) — |001)
i 010) — [010) * Swap gate
~ 011) — |011)
100 — |100) i
Truth Table 101) = [101)
110) — |111)
111) > |110)

* Universal quantum gates sets: {CNOT, T, H} or {CCNO., H}

O = O O
S O = O



Elementary Quantum Gates

. : _ (0 1 _ (0 —1 _ (1 0 e Had d gat
Pauli gates x .= (1 O) YV = (i O) 7 . (O _1) adamard gates
* Rotation gates ) | ) H := % G _11)
Ru(0) _ oibx _ cos(z)  —isin(5)
v —isin(%)  cos(®) * Controlled-Z gates
ity cos(2) —sin(2) 1 00 O
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Phase gate Z 001 0
{0 0O 0 0 -1
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Gate-Based Quantum Computation
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Efficiently Preparing Superposition States

* We can create a superposition of exponentially many terms with only a linear
number of the Hadamard gates.

0) —(H— [+ )

0) — i — @n
VoS L (a0 + )
0) [H 4

H®n|0>®n — ‘ >®n — \/% er{o,l}n \m)



The Quantum Oracle & Quantum Parallelism

* The quantum oracle for any Boolean function f: {0,1}"* = {0,1}™ is given by the
quantum gate U: |x)}|y) = |x}y D f(x)), Vx € {0,1}",Vy € {0,1}™.

* We set the input register to an equal superposition of all 2" possible n-bit strings:

Uy jj S o) jy S @) f(@))

xe{0,1}n x€{0,1}m

* In one run of the protocol, we obtain a final state with depends on all of the
function values. On the other hand, we would need exponentially many queries to
have full access to the function f.



Quantum Computing — Unstructured Search

» Searching in an unstructured list with size N

R Lov Grover (1961 -)

#1 #2 #3 .- #N

The best classical algorithm requires number of queries proportional to N

— Lov Grover (1996) proposed a quantum algorithm requires ~ VN queries



Quantum Computing — Factorization

* Integer Factorization used in the RSA cryptography system

; y e - - .‘_'l
. ,.-7::?. = .
4 <l ,\ ‘
: ’ : e ¥
i 3 %
: l \- - :
R 3
™ St b 1 |
ot

. ple £
Example: 463570199875051 = 27644437X16769023 Peter Shor (1959 -)

—_—

~ 24-9
The computational complexity of the best known classical algorithm scales

exponentially in the number of bits of the integer.

— Peter Shor (1994) invented a polynomial-time quantum algorithm

Other cryptosystem such as the Diffie-Hellman key exchange security (based on the
hardness of the discrete logarithm problem) and the Elliptic curve cryptography can be
broke in polytime by applying Shor’s idea.



Relations - A Glimpse of The Complexity Zoo

n X n Chess/Go

SAT, n X n Sudoku
Travelling salseman

Graph Isomorphism

Integer factorization,
Discrete logarithm

Multiplication,
Primality, etc.

- | 4

Efficiently solvable by classical computer
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Part II — Various Models of Quantum ML



Brief History of Quantum Machine Learning (1/4)

* In 2000’s - early explorations; mostly on detection & estimation instead of learning.

* The term ‘quantum machine learning’ was coined around 2013 (arXiv:1307.0411).
— HHL algorithm for approximately solve linear equations with a quantum RAM.
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Brief History of Quantum Machine Learning (2/4)

* Some critiques about quantum speeding-up ML since 2015.
— Not just about practically building a quantum compute but caveats of using it.

nature physics PROCEEDINGS
OF THE ROYAL SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

Published: 02 April 2015

Read the fine print

®
“ Quantum machine learning: a classical perspective
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Nature Physics 11, 291-293 (2015) | Cite this article Leonard Wossnig

Published 17 January 2018. DOI: 10.1098/rspa.2017.0551

Scott Aaronson

* Two types of quantum neural networks (QNNs) in 2018.
- Unitary feed-forward network and Quantum Boltzmann machine

PHYSICAL REVIEW X PHYSICAL REVIEW A
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Highlights Recent Subjects Accepted Collections Authors Referees
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Brief History of Quantum Machine Learning (3/4)

* Finding applications, advantages, and preliminary analysis of QNN:s.

COLUMN
nature Guest Column: A Survey of Quantum Learning Theory
L
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. . . Authors: Srinivasan Arunachalam, Ronald de Wolf Authors Info & Affiliations
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Nature Communications 12, Article number: 2631 (2021) | Cite this article Phys. Rev. Lett. 126, 190505 — Published 14 May 2021



Brief History of Quantum Machine Learning (4/4)

* Barren plateaus (vanishing gradients), quantum No-Free-Lunch theorem, etc...

nature communications arXiv.org > quant-ph > arXiv:2010.15968

Article | Open Access ‘ Published: 16 November 2018

Barren plateaus in quantum neural network training
Ia“dscapes [Submitted on 29 Oct 2020 (v1), last revised 10 Mar 2021 (this version, v2)]

Entanglement Induced Barren Plateaus

Quantum Physics

Jarrod R. McClean &, Sergio Boixo &, Vadim N. Smelyanskiy &3, Ryan Babbush & Hartmut Neven

Nature Communications 9, Article number: 4812 (2018) ‘ Cite this article Carlos Ortiz Marrero! Maria Kleferova! Nathan Wiebe

nature communications

Article | Open Access | Published: 19 March 2021 arXiv.org > quant-ph > arXiv:2007.04900

Cost function dependent barren plateausinshallow ™ g.antm physics

parametrized quantum circuits FSubmited on 9 1 2020
Reformulation of the No-Free-Lunch Theorem for Entangled Data Sets

M. Cerezo & Akira Sone, Tyler Volkoff, Lukasz Cincio & Patrick J. Coles
Kunal Sharma, M. Cerezo, Zoé Holmes, Lukasz Cincio, Andrew Sornborger, Patrick J. Coles

Nature Communications 12, Article number: 1791 (2021) ‘ Cite this article



Four C ate g() ries data processing device (right)

* CC: Learning classical data with
classical machine - Classical ML.

* QC: Learning quantum objects with
classical ML (e.g. matrix concentrations).

- S. Aaronson’07 — Learning quantum states.

- H.-C. Cheng, M.-H. Hsieh, P.-C. Yeh'15 -
Learning quantum measurements.

Em

* CQ: Processing classical datasets using
quantum computing — Lloyd et al.

data generating system (left)

* QQ: Processing “quantum data” using
quantum machine - largely open.

[E. Aimeur, G. Brassard, S. Gambs, “Machine learning in a quantum world,” Advances in Artificial Intelligence, 2006.]



Different Output Space
/\ put >p

Statistical Learning Framework R

* binary classification: Y ={-1,+1}
* multiclass classification: Y = {1,2,--- , K}
* regression: Y=R

N unsupervised: Y =

unknown target function \ | unknown distribution |
g: X =Y et W [T —n . X
l E. X1, X9, , Xp ...'0,‘
¥ ¥
training samples learning algorithm final hypothesis
D:(X17y1>7“°7(xn7yn> A h =g

0
training ) (good A)

known Eempirical(h) = % Z?:l E(h(Xg), yi)
testing )} (good D & good H)
unknown FEepsemble(h) = E, ¢(h(x), g(x))

hypothesis set

H




Categories from The Learning Framework (1/2)

unknown target circuit-level
algorithms
I >

-

learning algorithm
& hypothesis set

unknown data
(for training & testing) physical processors
» Data & Goal » Learning Mechanism » Physical device for
» classical or quantum » classical ML algorithms implementation
» hybrid » quantum variational circuits » classical CPU/GPU/TPU

» quantum processors



Categories from The Learning Framework (2/2)

Today

Today

Data & goal Learning mechanism | Physical device Examples
classical classical classical classical ML
classical classical quantum speedup running time
classical quantum classical VQC & simulator
classical quantum quantum VQC & QPU
quantum classical classical tomography & simulator
quantum classical quantum tomography & QPU

: quantum simulation
quantum quantum 2 classical VOE? & Sttt
quantum quantum ® "l quantum quantum BeyZubnn

machine?




Part [1T - ML with Quantum Algorithmic Speeding- up

Data & goal Learning mechanism | Physical device

classical classical quantum



Flowchart of Classical ML with Quantum Algorithm

Classical Quantum
Data set D: input x Data set D: input x Quantum system
Encoding State preparation
Classical machine Quantum machine .
. . . . Quantum evolution
learning algorithm learning algorithm
Read out measurement
Prediction y Prediction y




[Information Encoding

* To learn from classical data, we need to load data from classical memory into the
quantum computer; this process is called state preparation in QML.

* In the training phase, we consider data set D = {xq, ..., X, } of N-dimensional real

feature vectors.

Encoding

Basis
Amplitude
Qsample

Hamiltonian

Number of qubits

N
log N
N
log N

Runtime of
state preparation

0(MN)
0(MN)/0(log MN)
0(MN)/0(log MN)
O(MN)/0O(logMN)

Input feature

Binary

Continuous

Binary

Continuous



Basis Encoding (1/2)

* Assume each data is N-dimensional bit string, i.e. x,, € {0,1}" for x,,, € D:

1
Xm P |Xm) D w |D) := \/_MZ’%:l | %Xm)
* For example, given D = {xq,x,} = {0101, 1110}, then |D) = \/—15(|0101) + |1110)).

10101) = ((1)) R ((1)) R ((1)) R ((1)) —(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)7

11110) = ((1’) R ((1’) R ((1’) R ((1)) = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0)”

T
= |D) = (o, 0,0,0,0,1/+/2,0,0,0,0,0,0,0,0, 1/\/2,0)



Basis Encoding (2/2)

* Preparation in time O (M N ) by Ventura-Martinez, and Trugenberger.

* Approach by the Quantum random access memory, in time O (log N).

1 1
QRAM: =3y _1[m)[0 -+ 0) = =¥ [m)|xm)

PHYSICAL REVIEW LETTERS

ighlights Recent Accepted Collections Authors

Quantum Random Access Memory

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone
Phys. Rev. Lett. 100, 160501 — Published 21 April 2008

* However, an efficient hardware implementation is still an open challenge.



Computing in Basis Encoding

* Suppose we have a Boolean logic gate f: {0,1}" — {0,1} giving binary label to each
data x,,. Then, this can be implemented by (universal) quantum Toffoli gates.
This is called a quantum oracle Ug: [x)|0) & |x)|f (x)).

* Quantum parallelism:

M

1
U, rzm Jeml0 0y e B frm)If Gon))

* To read-out the state of the qubits, we have to measure it (quantum tomography).
— Frequentist estimator via multiple shots of measurements.

* Caveats: (i) large amounts of qubits needed; (ii) realizing a quantum RAM.



Amplitude Encoding

e For simplicity, suppose each feature vector x,,, = (X, 1, ..., X is normalized, i.e.
) m m,1 m,N

L1 x5, ; = 1. (This condition can be removed by non-expansive manipulations.)

* Then, we can prepare the quantum state |x,,) by using n = log N quantum bits:

. 1 .
xm = |xm> . §V=1xm,i|l) D = |D> = \/_MZ%zl Zﬁvzlxm,ilmﬂl)

e State preparation in linear time: O(MN)/0(log MN).

* For sufficiently uniform vectors, the preparation may be efficiently done via gqRAM.



Computing in Amplitude Encoding (1/2)

* Clustering: Assigning a vector 2 € CV to two groups: {U;,,}}2_; and {W,, }r 1.
2

: . L1 R
* Classical approach: to compare the distance ‘u - Ym Um

Takes time O (poly(MN)). <« involving evaluating inner product (i, n,)

* The swap test for computing the inner product.

The controlled-swap gate }
|?7b> R 2

B) .
0y | HFeHH A= Pr(0) =1 + 1|(¥]¢)?




Computing in Amplitude Encoding (2/2)
* The clustering can be done in O (log MN) in a quantum computer.

e Caveats: Exponential speed-up!

- If wanted to read-out the value of any specific entry x; of |x) = Y, x;|i), then in

general would require repeating the algorithm roughly O(N) times, this then kills
the exponential speed-up. « measurement outcome X; with Pr(x?)
Once again, if preparing the amplitude encoding

in |x) requires super-logarithmic time, then the speed-up unfortunately vanishes.

PROCEEDINGS nature physics
OF THE ROYAL SOCIETY A '

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES _ :
Published: 02 April 2015

Read the fine print

Home Content Information for About us Sign up Submit

L))

hock for
ey

“ Quantum machine learning: a classical perspective Scott Aaronson
Carlo Ciliberto, Mark Herbster, Alessandro Davide lalongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini,

Leonard Wossnig Nature Physics 11, 291-293 (2015) | Cite this article

Published 17 January 2018. DOI: 10.1098/rspa.2017.0551



Support Vector Machine with Quantum RAM

* The Support Vector Machine (SVM) can be formulated as a quadratic programming
problem, which can be solved in time O (poly(M ,N )), ie.

- - - 1,5 - - -
max {L(a) =(a,y) —5{a, Ka>:2§-"=1 aj =0,y;ja; = 0}; [K1ij = k(%;,%;).
» Efficient inner product evaluation via quantum algorithm takes O (poly(M) log N ).

* Using a non-sparse matrix exponentiation technique for approximating the kernel
matrix inverse requires O (log MN ). < Exponential speed-up!

e Caveats:

PHYSICAL REVIEW LETTERS

- Works with non-sparse kernel matrix, which has
a small condition number (as in the HHL).

Highlights Recent Accepted Collections Authors

Quantum Support Vector Machine for Big Data Classification

- Again) the quantum RAM iS indisp enS able. Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd

Phys. Rev. Lett. 113, 130503 — Published 25 September 2014




Support Vector Machine without Quantum RAM (1/3)

* Rotation encoding: ®: X — |®(x)) mapping the data to the quantum feature space.

* To implement the feature map, a rotation Z gate U z) is used in the ansatz Ugpz)H
e.8 Up) = e %2 for 1-bit x; Upx) = el(¥121+x222+(m=x1)(M=X2)2122) for 2-bit X.

Ansatz
A

on ( \
[+1] — H H S
] —[H I b
- > Us(z) Us (z)
[+1] :

0

[Havlicek et al., “Supervised learning with quantum enhanced feature spaces,” Nature, 2018 |



Support Vector Machine without Quantum RAM (2/3)

» With the quantum feature map, the classical kernel is k(X;, X;) = ‘(Cb(ic’i)‘cb(fj)ﬂz.

* Such a kernel (constructed from the above ansatz) is efficiently implementable via
short-depth quantum circuits, but believed classically hard.

b

T oy

%R A e I
0

i
0
i
1

U
H
-
=)

5
nature

Letter | Published: 13 March 2019

Supervised learning with quantum-enhanced feature
spaces

Vojtéch Havlicek, Antonio D. Cércoles , Kristan Temme , Aram W. Harrow, Abhinav Kandala, Jerry M.
Chow & Jay M. Gambetta

Nature 567, 209-212 (2019) ‘ Cite this article



Support Vector Machine without Quantum RAM (3/3)

C @ qiskit.org/documentation/stubs/qiskit.aqua.algorithms.QSVM.html

& Qiskit

English

Q_ Search Docs

Documentation homepage

Frontmatter

Getting started Tutorials Providers Applications , Resources

Github

Docs > Qiskit Aqua APl Reference > Aqua (Algorithms for QUantum Applications) (qiskit.aqua) > Algorithms (giskit.aqua.algorithms) >

giskit.agua.algorithms.QSVM

giskit.aqua.algorithms.QSVM

CLASS QSVM(feature_map, training_dataset=None, test_dataset=None, datapoints=None,
multiclass_extension=None, Lambda2=6.661, quantum_instance=None)

Quantum SVM algorithm.

[SOURCE]



Part IV - Learning with Quantum Machines

Data & goal Learning mechanism | Physical device

classical quantum classical/quantum



Variational (Parametric) Quantum Circuits

» The QNN is characterized by a unitary ansatz U(8) = e™1HnOn ... e71HnOn yhere
0 = {64, ..., 0,} are the parameters we aim to learn and H; are Hermitian operators.

* Goal: find a good assignment of parameters (e.g. via gradient descent) in terms of
an objective function f(x) = (Yg |1 @ I|Pg ), where [1pg ) = U(B)V (x)]0).

10— =

visible layer <

0 Tve T ue) TERT

10y — N\
hidden layer < |0) — e
0) — —




Hybrid Training for Variational Algorithms

* Idea: Use the quantum machine to compute the objective function f (H(t)),

and then use a classical device to compute better circuit parameters 6 ¢+1) with
respect to the objective. Iterate the routine until the objective is optimized.

Quantum device

0y —— A

‘ analytical or numerical
gradient




Optimization Methods (1/2)

* Quantum Approximate Optimization Algorithm (QAOA) for the MaxCut Problem.
— heuristic, highly problem-specific, could be computationally expensive.

* Iterative derivative-free methods (e.g. the PSO). P R P SR O
Quantum Physics
* Numerical gradient (finite difference). ore—T
A Quantum Approximate Optimization Algorithm
° Analy‘tical gradient (parameter Shift rule). Edward Farhi, Jeffrey Goldstone, Sam Gutmann
- In general, aU(H) mlght not be unitary. arXiv.org > quant-ph > arXiv:1701.01450
- By rotation gate, dU(8) can be expressed e

as linear combinations Of unitaries; Practical optimization for hybrid quantum-classical algorithms

hence computable by circuits.
(Yuantum  vowe susucarons
- Other gradlent methOdS' — cl::c?\!jrirz golrr%,ﬁl?ecljaga\n/dlgﬂ phAysics and quantum info

Quantum Natural Gradient

Gian Giacomo Guerreschi, Mikhail Smelyanskiy

James Stokes’, Josh Izaac?, Nathan Killoran?, and Giuseppe Carleo®

Quantum circuit learning

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii
Phys. Rev. A 98, 032309 — Published 10 September 2018



Optimization Methods (2/2)

& & @ qiskit.org/textbook/ch-applications/qaoa.html

£ Qiskit

Learn Quantum Computation
using Qiskit

What is Quantum?

0. Prerequisites

1. Quantum States and Qubits
1.1 Introduction
1.2 The Atoms of Computation
1.3 Representing Qubit States

1.4 Single Qubit Gates

C @ qiskit.org/textbook/ch-machine-learning/machine-learning-giskit-pytorch.html

£ Qiskit

Learn Quantum Computation
using Qiskit

What is Quantum?

1. Quantum States and Qubits a n d Q i S k i -t

1.1 Introduction

Overview

Solving combinatorial
optimization problems using
QAQA

In this tutorial, we introduce combinatorial optimization problems, explain approximate optimization
algorithms, explain how the Quantum Approximate Optimization Algorithm (QAOA) works and present
the implementation of an example that can be run on a simulator or on a 5 qubit quantum chip

& C @& pennylane.ai/qml/index.html
Overview @ PENNYLANE Quantum machine learning Install Plugins Documentation Blog QHACK

Hybrid quantum-classical Quantum machine learning
Neural Networks with PyTorch

near-term

qguantum devices ¢

?FAQ



Various Ansatzs for QNNs (1/2)

* The dimension of the parameter space is typically mush smaller than the space of all
unitary operators (e.g. 0 (22”) for n-qubits).

* Goal: designing an ansatz for the QNN such that it is rich enough to allow the
parameterized circuit to approximate the solution with as few parameters as possible.

* It is desirable that the qubit-efficient circuits is hard for classical simulation -
the objective function cannot be efficiently computed on a classical computer.
(But it does not rule out the possibility that there are other efficient classical ways.)

Hereomsity — ADVANCED QUANTUM TECHNOIOGIES

&
<

Idle circuit Circuit A Circuit B Arbitrary unitary
Full Paper (& Token Access

a)
1) % o 0 -{v) Expressibility and Entangling Capability of Parameterized
o Quantum Circuits for Hybrid Quantum-Classical Algorithms
| @ |

Sukin Sim &4, Peter D. Johnson, Alan Aspuru-Guzik &

First published: 14 October 2019 | https://doi.org/10.1002/qute.201900070 | Citations: 24



Various Ansatzs for QNNs (2/2)
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Caveat: Barren Plateus

* On one hand, we desire entanglement between qubits to exploit full guantumness.

* On the other hand, excess of entanglement between visible and hidden layers may
cause barren plateaus; hence both gradient descent and gradient methods fail.

* Any trade-off¢ How to quantify/characterize them?

BRACD

7(63)

Uy | T v(8) arXiv.org > quant-ph > arXiv:2010.15968

- oo
hidden Fie) e Uit Quantum Physics
U(Bs) | vew | [Submitted on 29 Oct 2020 (v1), last revised 10 Mar 2021 (this version, v2)]
Entanglement Induced Barren Plateaus
Sl U | Carlos Ortiz Marrero, Maria Kieferova, Nathan Wiebe
Visible{ v | | v




Various Quantum Software Packages

| | == Qulacs
=—s— Qulacs with opt
107 : 5 5 5 = —— Yao
-~ Qiskit
1 —=— Qiskit with opt
10+ 4 —e=— ProjectQ
—=— PyQuEST-cffi
—— Qibo
1094 —+— Intel-QS
'G' —=— qxelerator
GUJ) 10—1
7]
E_
= 10~
10734
10—4 J
10_5 E | | | | |
5 10 15 20 25
# of qubits

FIG. 8 Times for simulating random quantum circuits with a single thread using several libraries.

arXiv.org > quant-ph > arXiv:2011.13524

Quantum Physics

[Submitted on 27 Nov 2020 (v1), last revised 23 Dec 2020 (this version, v2|]

Qulacs: a fast and versatile quantum circuit simulator for research purpose

Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen, Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin Yan, Toru Kawakubo, Yuya O.
Nakagawa, Yohei lbe, Youyuan Zhang, Hirotsugu Yamashita, Hikaru Yoshimura, Akihiro Hayashi, Keisuke Fuijii



Epilogue



Conclusions and Outlooks A @

* There are other QML models that we haven’t discussed in the lecture: @ @

- Quantum Boltzmann machines e~ 21 %ifi /7(9).

- Quantum example oracle |0™) = )., /p(xX)[x)|f (x)).

- Quantum PAC-learning model. @ @ @

* QML is still at its very early stage of research. How to demonstrate quantum
advantages, to provide theoretical evidence, and to identify the field it can apply?
On the other hand, can one prove that the quantum circuit learning is just a lure?

* Conversely, existing ML techniques could help quantum information development.
* Even if QML does not help classical problems, it might help quantum problems.

* My ultimate goal: to invent a truly quantumly-meaning learning paradigm.

Hao-Chung Cheng (3{ &% ) %”Of
haochung@ntu.edu.tw Cy l(—fr//‘
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