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The model achieves 5% error
on 1000 training data, what can
we say about the testing error?

The testing error on 500 testing
samples is 8%.

Maybe it’s just because it gets
lucky on the testing data.

How many data is needed

to train this model?
Paper X says they successfully

train the model with dataset
Can we have precise statements Y of 10000 samples.
with theoretical guarantees?




Outline

* PAC Learning Framework
» Training error v.s. generalization error
» Sample complexity for axis-alighed rectangle concepts.
» Sample complexity for finitely many hypotheses (consistent/inconsistent cases)

 Rademacher Complexity
» Loss functions associated to hypothesis set
» Rademacher complexity and geometrical interpretation
» Generalization bounds for binary/multi-class classifiers.
» Rademacher complexity for fully-connected neural network

e Growth Function and VC Dimension

» Growth function, shattering, VC dimension
» Generalization bounds



PAC Learning Framework



Motivation

e Given the training set, a learning algorithm generates a hypothesis.

* Run hypothesis on the test set. The results say something about how
good our hypothesis is.

» How much do the results really tell you?
» Can we be certain about how the learning algorithm generalizes?

v" We would have to see all the examples. (Not practical)

* Insight: Introduce probabilities to measure degree of certainty and
correctness. (Valiant 1984)



Computational Learning Theory

* Computational learning theory is a and field
related to of machine learning

* We need to seek theory to relate:
» Probability of successful learning
»Number of training examples
» Complexity of hypothesis space

» Accuracy to which target function is approximated



* Want to use height to distinguish men
and women
» Training and testing data drawn from
the same distribution.

e Can never be absolutely certain that we have
learned correctly our target (hidden) concept
function.

» There is a non-zero chance that, so far,
we have only seen a sequence of bad
examples (E.g., relatively tall women and
relatively short men)

* It’s generally highly unlikely to see a long
series of bad examples!

| lhe dlstrlbutlon of male and female heights

The distribution of adult heights for men and women based on large cohort studies across 20 countries in North America, Europe.
Easl Asia and Australia. Shown is the sample-weighled distribulion across all cohorls born belween 1980 and 1994 (so reaching
Lhe age ol 18 belween 2008 and 2012).
Since human heights within a population typically form a normal distribution:

68% ol heighls lie wilhin 1 slandard devialion (SD) ol the median height;
- 95% ol heighls lie within z SD.
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Probably Approximately Correct Learning

* The learner receives samples and must select a generalization function
(hypothesis) from a certain class of possible functions.

* With an (efficient) will find a
hypothesis that is identical to the hidden target concept.

can be ruled out (with high probability) using a
“small” number of examples

> Any with a significantly large set of training examples is
: it must be

» Any (efficient) that returns hypotheses that are is called a
(Formal definition to be introduced later)



PAC Learning Model

Denote
» X': The set of all possible or , also referred as
» UY: The set of all possible or
v' For introductory purposes, assume Y = {— 1 +1} (binary classification)
» Conceptc: X = U:
v If Y = {—1, +1}, we can identify ¢ as the subset of X over which it takes value 1.
» Concept class C: A set of concepts.
Learning problem formulation: A learner
» Considers a fixed set H of possible concepts, also referred as :
» Receives a sample § = (x4, ..., X,,) of m examples drawn i.i.d. according to some
distribution D, as well as the labels (c(xy), ..., c(x,,)) based on a
target conceptc € C.
» Uses the labeled sample S to select a hypothesis hg € H that has a small
w.r.t. the target concept c.

What do we refer by generalization error?



Generalization Error v.s. Empirical Error

Definition: Generalization error
Given a hypothesis h € H, a target concept ¢ € C, and an underlying

distribution D, the (a.k.a. )of his
defined as
R(h) =P,.p [h(x) + C(x)] = IEx««D[1h(x):atc(x)]
Definition: Empirical error Not accessible for the learner
Given a hypothesis h € H, a target concept c € C, and a sample § =
(x4, ..., X ), the or risk of h is defined as

m
~ 1
Rs(h) = EZ Ln(xp)#c(x)
=1 Accessible for the learner

Remark:
Empirical error is an unbiased estimate of generalization error
Es.pm|Rs(h)| = R(h)



PAC Framework

Definition: PAC-learning

A concept class C is said to be PAC-learnable if there exists an algorithm A and a polynomial
function poly(:,-) such that forany € > 0 and § > 0, for all distributions D on X, and for any
. : 1 1
target concept ¢ € C, the following holds for any sample size m = poly (Z’E)
PS~Dm[R(h5) < E] >1-6

where hg € H is the hypothesis learned by A from sample S. We say A is a PAC-learning
algorithm for C.

Remark:

* The hypothesis returned by PAC-learning algorithm A is
> (generalization error at most €), with
> (atleast 1 — & ), after observing
> (polynomial in i and %)

 PACframework is a
» No particular assumption on the distribution D from which examples are drawn.
. assumption: Training set and test sets are drawn from the same distribution.
* PAC deals with the learnability for a concept class C and not a particular concept c.
» Assume concept class C is known to learner, while the target concept ¢ € C is unknown.



Example: Learning axis-aligned rectangles

* Axis-aligned rectangle concept class:
> Input space X’ = R?
»>Y ={-1,+1}

» Concept class C: Collection of all axis-aligned rectangles.

* For a specific concept ¢ € C, a sample S may
look like

If only S is observed, how do we guess c?

Is C PAC-learnable?

Generalization error of hypothesis h

empirical error = —

>

o
. e\
b —————————— =====¥—__generalization
. error



Example: Learning axis-aligned rectangles

* Consider the closure algorithm A:
» Given sample §, return hg as the smallest
rectangle with S.
» By definition, hg is a subset of c.

* The generalization error is due to positive * |If one takes more instances, new instances
instances in S not occupying the inner may occupy the previously grey areas,
edge of ¢ (grey area). leading to smaller generalization error.
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If we randomly draw m instances, how unlikely will R(hg) > €?



Example: Learning axis-aligned rectangles

* Else, consider four rectangles

the inner edges of ¢

D(

D(

D(

If D(c) < €,then R(hs) = D(c — hg) < D(c) < e.

) =€/4

D(

along
) =€/4
) =¢€/4
)=¢€/4

Q: What if you cannot find rectangles with
exactly € /4 probability mass?

A

A: See formal proof in next page

Let S be a sample of m randomly drawn instances
» If S coincides with all four rectangles

,then R(hg) <€

» How likely will things go wrong?

Ps.pm[S N = 8] = (1 —e/4)™
Ps.pm[SN =0l =1 —-¢€/4)™
Ps.pm[S Nl = @] = (1 —e/H)™
Ps.pm[S Nl = @] = (1 — /4™

v’ Probability of things going wrong at most

Hence Pg_pm|[R(hg) < €] =>1—4e 4+
> Ps_pm|[R(hs) < €] 21— & form 2 Zlog>

A

4(1 — €/4)M< 4o~ me/4

me

Sample complexity




Axis-aligned hyper-cube is PAC-learnable
(Formal Proof)

Theorem 7.2. Consider input space X = R", and the concept class C' s the set
of all face-aligned closed hypercubes lying in R™. That s, each concept ¢ is the
set of points inside/on a particular face-aligned hypercube. Consider algorithm
A as follows: Given a labeled sample S, the algorithm returns the tightest face-
aligned closed hypercube Vg consisting the points labeled with 1. Then

mMLE

PR (Vs) <€ >1—2ne 2n

In other words, for any o > 0,

= e 2n 2n
PR (Vg) < —log—| >1-9
m (

Thatis,| Ps_pm[R(hs) < €] =1 -6 form > z?nlog%n

PAC-learnable



Proof. Let V € C' be a target concept, which is a face-aligned closed hypercube
defined by V = {x ¢ R" : (%) < [az,b].¥k = 1,--- ,n}. By definition, Vs c V.
Since R“"(Vg) < P[x € V], we may assume P[x € V] > e. Define hypercubes
v ={xeV: ) ¢ lap, sk}, i ={xeV: k) ¢ [ak, sk)}
o ={xeV:2® et by]}, tro={xeV:2® e (tx,b]}

where

sp =inf{s:P[{x eV :2¥ g[ay,s]}] > — 2n

=inf{t : P[{x e V :2® € [t,by]}] > 2_n}

Then Plx € vpe] 2 o=, P[x € i“] < Yk = 1,--- ,n,f = 1,2. Define

2n 2n
Vu:{XER“:I{k}E[ktk] Vk=1,---,n}. Then V; C Vs C V implues

EJ U ﬁ“‘ = EH:ZP[X € Ure] <€
k=1£=1

-Rerr'(VS) 5 ]Pl X €

k=1 £=1
Note that
n 2 n 2
P[Vo ¢ Vs] =P [U SN, = m)] <> Y PSnwp,=0)<2n (1 _ zin)m
k=1 £=1 k=1 £=1
Therefore

P[R™"(V; <e]:>IPWDc:V5cV]>1-2n(1-%)m21-2ne-%



Sample complexity for finite hypothesis sets
- consistent case

* Theorem: Let H be a finite set of binary classifiers on X. Let A be an algorithm
such that for any target concept ¢ € H and i.i.d. sample S of size m returns a

consistent hypothesis A(S) € H such that ﬁS(AX(S)) = 0. Then
Ps_pm[R(A(S)) < €] = 1— |H|e ™¢

where D is the underlying distribution. In other words,

1 1
P¢._pm A < —/| log|H| + log =
- [fR( () m(og| |+og5)

Note that the bound holds true regardless of the algorithm A, the target concept
c, or the underlying distribution D.

>1—¢6 | (Mohri2012, Theorem 2.1)

Sample complexity

Ps.pm|R(A(S)) < €] =1—6form = log|H] +log(1/0)

€




Example

o Z/\)F wishes to predict whether or not i-phone 10 will
break if thrown out from the x’th floor at Taipei 101.

> X ={1,2,...,101} (There are 101 floors)

» Hypothesis hj: The maximum floor thrown out from which i-
phone 10 will remain intact is floor k, namely
h (%) = { intact ,ifx <k
k broken ,ifx >k

» Hypothesisset H = {hy, h{, h,, ..., h1p1}.
» Target concept c = hy- € H, where 0 < k™ < 101 is unknown to
ZI/NF.

* Suppose E/|\)i is interested in the accuracy of the model,
should the floors be drawn according to distribution D.
The (true) risk function is

R(h) = Ex.p [1h(X)¢c(X)]

Say, if D is the uniform distlgilbution, then

1
R(h) = mz Lho#co)
x=1

Listen up, we need ideas to make
more money!
S e ¥ q
- ; {/ /




Example

e Zr/]\JE& collects data and train a prediction model

» The i’th experiment: Randomly choose X;~D, throw i-phone 10
from the X;’th floor, and record the result Y; (broken/intact).

»  Empirical rlsk function for sample S = ((Xl, Y1), ..., Xp, Ym)):
Rs(h) = Z 1h(Xl)¢Y — _Z 1h(Xl)¢c(Xl)

» Basedon the coIIected sample S, %’/J\/g applies an algorithm A
to train a model A(S) € H that achieves zero empirical risk

Rs(A(S)) = 0, namely A(S)(X;) = c(X;) foralli =1, ..,m
* One can guarantee that
1 1
m < — —
Ps.p [R(A(S)) = (108|H| + log 5)
» Here |H| — |{h0,h1, th"'lthl}l — 102, SO
1 1
Pe._pm [R(A(S)) < — (log(lOZ) + log5>

>1-6

>1-6




Target concept ¢ (unknown to Z/]\)E)
0 10 20 30 40 50 60 70 80 90 100 m target




m=2>5

Assume D is uniform distribution
S=(X, 1), ., (X5, Ys))

Z/NE’s model A(S)
20 100

0 10

A(S)(x) = intact A(S)(x) = broken A(S)(x) = broken ™ target

: c(x) = intact c(x) = intact c(x) = broken ® intact
® broken

® model

14
R(A(S)) = Exp|lhxyzc] = To7 = 01386

P._ps [R(A(S)) < %(10;;(102) + log0—11>] > 0.9
1.3855



m = 10
Assume D is uniform distribution
S = ((Xp Y1)» rer) (X10; Y10))

Z/NE’s model A(S)
30 100

0 10 20

A(S)(x) = intact A(S)(x) = broken A(S)(x) = broken ™ target

: c(x) = intact c(x) = intact c(x) = broken ® intact
® broken

® model

14
R(A(S)) = Exp|lhxyzc] = To7 = 01386

1 1
Pg_ps [R(A(S)) < E(log(lOZ) + loga>] > 0.9
0.6928



m = 20

Assume D is uniform distribution
S = ((X1»Y1); ey (Xzo; Yzo))

Z/INE’s model A(S)

A(S)(x) = intact A(S)(x) = broken A(S)(x) = broken
: c(x) = intact c(x) = intact c(x) = broken

8
R(A(S)) = Exp|lhxyzc] = Tog = 0792

1 1
Pg_ps [R(A(S)) < %<log(102) + loga>] > 0.9
0.3464

m target
® intact
® broken
® model



m = 30

S = ((X1, Y1), ..., (X3, Y3o))

0

10 20 30
AENEES NN EEEEEEEEE AN EEEEEEEEEEEEEEE

Assume D is uniform distribution
Z/\E's model A(S)
‘ 100

A(S)(x) = intact A(S)(x) = broken A(S)(x) = broken
: c(x) = intact c(x) = intact c(x) = broken

1
R(A(S)) — IEX~D [1h(X)-'/=C(X)] — m =.0099

1 1
Pg_ps [R(A(S)) < %<log(102) + loga>] > 0.9
0.2309

m target
® intact
® broken
® model



m = 40

Assume D is uniform distribution
S = ((X1: Y1); ey (X4o; Y40))

Z/NE's model A(S)

A(S)(x) = intact A(S)(x) = broken A(S)(x) = broken ™ target

: c(x) = intact c(x) = intact c(x) = broken ® intact
® broken

® model

1
R(A(S)) — IEX~D [1h(X)-'/=C(X)] — m =.0099

1 1
Pg_ps [R(A(S)) < E(log(lOZ) + loga>] > 0.9
0.1732



4 90 73

m= 167
Assume D is uniform distribution
S = ((XlJ Yl)r ) (X167J Y167))

Zr/\jE's model A(S)
0 10 20 30 40 50 60 70 !‘ 80 90 100

A(S)(x) = intact A(S)(x) = broken
c(x) = intact c(x) = broken

\’

0

R(A(S)) = Ex-p|lneyzcn] = To1 =

Pg_ps [R(A(S)) < L(log(lOZ) + logi>] > 0.9
167 0.1
0.0415

m target
® intact
® broken
® model



Sample complexity for finite hypothesis sets
- consistent case (Proof)

* Theorem: Let H be a finite set of binary classifiers on X. Let A be an algorithm
such that for any target concept ¢ € H and i.i.d. sample S of size m returns a

consistent hypothesis A(S) € H such that ﬁS(AX(S)) = 0. Then
Ps_pm[R(A(S)) < €] = 1— |H|e ™¢

Proof: Let H. = {h € H: R(h) > €}, then
Ps.pm|R(A(S)) > €] = Ps.pm[A(S) € H]

xm < Ps_pm[3dh € H, s.t. h(S) = c(S)]
h(S) = c(S)
hy(S) = c(S) < z Ps.pm[h(S) = c(S)]
heH,
— m —Mme
iy, () = c(§) < zhEHe(l €)™ < |Hele
hy(S) = ()

He = {hy, ... hjy |}



Empirical Risk Minimization

* Let H be a family of hypotheses. Let h™ € H be the optimal hypothesis with
the minimum (true) risk among H:
h* € argmin R(h)
heH
* Empirical Risk Minimization (ERM)
Since one cannot evaluate the risk function R(+) directly, one may instead

approximate R by the empirical risk ﬁg evaluated over sample S, and

approximate h* by the hypothesis hé®M that minimizes the empirical risk

hERM € argmin Rs(h)
heH

hER’M may be suboptimal, but what is the gap?

R(hERM) — R(R*) = (R(RERM) — Rg(hERM) ) + (Rs(hERM) — R(RY))
< (R(HERM) — Rs(REFM) ) + (Rs(h") — R(R"))

sup|Rs(h) — R(h)|
heH

Can we bound this quantity?

<2




Sample complexity for finite hypothesis sets
- Inconsistent case

* Theorem: Let H be a finite set of binary classifiers on X, then
Ps..pm [rf{leaglﬁs(h) - R(h)| < e] > 1 — 2|H|e~2me*

where D is the underlying distribution. In other words,

Pg..pm

Ps_pm |max|Rs(h) — R(A)| < ¢| = 1 = & forjm >

rirllealgdﬁs(h) —R(h)| <

\

log|H| + log(2/6)

>1—-96

2m

(Mohri 2012, Theorem 2.2)

The bound of gap between generalization
error and training error over all hypotheses

Note that the bound holds true regardless of the underlying distribution D.

Sample complexity
log|H|+1log(2/6)
262




Rademacher Complexity

A useful tool to derive non-trivial generalization bounds when |H| = oo



Loss functions associated to hypothesis set

Let H be the hypothesis set of functions mapping from input
space X to output space Y.

Let L(y,¥) be the loss function between prediction y € Y and
ground truthy € .

To each hypothesis h € H, we can associate a function g that

maps (x, V) € X X Y to L(h(x), V). In other words, g(x, V)
evaluates the loss h suffers given input x and ground truth y.

Denote G as the collection of all such functions g associated to
some h € H.

H j
h \4.9 1 G

93
h;

92

g@(xiy) = L(hB(x)'j;)



Loss functions associated to hypothesis set

>Example: The hypothesis set of all linear binary classifiers on R
can be written as

H ={h,,:w € R% b € R},
where each h,, ,, is a binary linear classifier
hy p(x) = sign(w'x +b)
Suppose we adopt the 0-1 loss function
L(y,5) = Wy # J}
We can associate each hypothesis hy, , € H with g,,, as given by
gw,b (x» 5’\) — L(hw,b(x)» 5;) = 1{hw,b(x) + 5;}



Loss functions associated to hypothesis set

» Example: The hypothesis set pertaining to a neural N7 N7

network @ W W WL e @
1 b2 bj_”

H:{hQ:HEG}J : b: _
where 8 = {W', b'}{_, is the parameter of all . }& . )}& |

x( 1
weights and biases, and : i

Ly y®)

hg(x) =a( Wt ..qo( W2 o( W' [x + bt)+/b?) -+ bt )

Suppose we consider the cross entropy loss
K

L9 == ) 9% logy®
k=1
We can associate each hypothesis hy € H with gg, as given by
K

96(%.9) = Lhg(0,9) = = > 9® logh{? (x)
k=1



Set of Loss Functions and Empirical Loss Minimization

* G can be interpreted as the family of loss functions
associated to H.

* To minimize the empirical loss evaluated over 9o(x,9) = L(hg(x),9)

tra|n|ng data {(xl' yl)} =1 IS eqU|Va|ent to Denote Z = xxy

. ~ . ~ and z; = (x;, V;)
inf z L(h(x;),y;) = ;relg z 9(xi, 9i) = inf 2 9(z;)
=1

heH ¢ gEeG

e If G is “big”, it is more likely to achieve small
empirical loss, but also more likely to overfit.

e How to measure the “size” of G? Rademacher complexity

* How does the “size” of G relates to “overfitting” ? Rt Iz tael Rl ele]



Rademacher Complexity

* Let G be a family of functions mapping from Z to [a,b] and S =
(z4, ..., Zy) a fixed sample of size m with elements in Z. Then the
empirical Rademacher complexity of G with respect to the sample S is

defined as
m

~ 1
Rs(G) = Eq [sup—z 0:9(2;)
gee M
where o = (0, ..., 0., ), With g;s being independent uniform random

variables taking values in {—1,+1}. The random variables o; are called
Rademacher variables.

* Let D denote the distribution according to which samples are drawn. For
any m € N, the Rademacher complexity of ( is the expectation of the
empirical Rademacher complexity over all samples of size m drawn
accordingto D:

ERm(G) — IES~Dm[§§S(G)]



Geometric Interpretation

m
~ 1
Rs(6) = Eq [sup—z 019(z)
geG M 4

=1

Suppose we have two samples S = {z;, z,}, then

_ 1 a

Re(G) = Eq Supz(ﬁg(zﬂ + 029(22)) 9(z)

geaG /
1 1

1 Sup3 (9(22) + 9(z2)) + sup3 (=g (z1) = 9(2)) (s (0~ 9) #5103 () + )
4 1 1

+ sup—= (g(zl) — g(zz)) + sup = (—g(Zl) + 9(22))

gEG 2 gEeG 2

;](21)

1

— SUPl(g(zl) +9(z2)) + stlp1 (—9(z1) — 9(22))
\/E geG 2 geG 2




Binary Classifier Generalization Bound

* Let X be input space, Y = {—1, +1} be output space,
H be a hypothesis set. If 0-1 loss is concerned, then

Hypothesis

True loss  Training loss complexity  |log(1/6 )
P [sup(R(h) — Rs(h)) < R, (H) +\/ gz(m/ ) >1-35 (Mohri 2012, Theorem 3.2)

heH Sample size Confidence

where SRm(H) = [Eq. Dm[iRS(H)] for which D is the
underlying distribution on X and

9%S (H) = Eg |sup— z O-lh(xl)

(heH m

Loss

0-1 loss

forS = (xq, ..., Xm)

* Roughly speaking, Rademacher complexity bounds yh(x)
the gap between training error and true error.

margin



Multi-class Classifier Generalization Bound

* Let X be input space, Y = {1, ..., k} be output space,
H be a hypothesis set. If hinge loss is concerned, then

True loss  Training loss

heH

Hypothesis
2 complexity

2m

Sample size Confidence

P [sup(R(h) — Rs(h)) < %mm(w(ﬁ)) + Jlog(l/ D>1-s

where Y(H) ={x+- h(x,y):h € H,y € Y}.

* More elaborately, iRm(l/J(H)) = E5~Dm[ﬁs(1/)(H))];

for which D is the underlying distribution on X, and

§\%S(I.IJ(H)) = [Eq4

forS = (xq, ..., xXm)

sup —

heH,yeym

- Z o;h(x;,y)

=1

(Mohri 2012, Theorem 8.1)

Loss

hinge]loss (slope -1/p)
0-1 loss

margin
h(x,y) —maxh(x,y)
y£Y



Rademacher complexity for Neural Network

Theorem 7.12. Given domain X in Euclidean space R™, let H; be the collection
of standard neural network (scalar) functions of the form
X = Watg_1(Wa—_1%a—1(- - - (¥1(W1Xx))))
where Wy is a row vector, each Wy, is a matriz satisfying |[W} lp.g < Mpq.k,
and each v is an element-wise 1-Lipschitz positive-homogeneous function. Here

p and q are exponential conjugates, 1 < p < oo. Let Sy = (X1,....,Xm) € A™ be
a sample of size m, and denote M, , = ]—[‘,f:1 M, 4k, B = maxj<i<m [|Xil|2.

)

(b) If p=q =2, then
ASx d) £ —Mz2 2(d —1)log2 ) — l<\z| 2 _I \/m

m
Rademacher complexity bounds

(a) Let g be a convex strictly increasing function, then

:QS.x(Hd) < '1—9_1 (2(11[‘:0 [9 (‘Up‘q

m

E ULX1
=1

m

where o = (04, ...,0,,) are Rademacher variables.

(c) Ifp=1, q = o0, then

2(dlog2 + logn)

Jm

m

2.

A 1
;Ml,x \J 2(dlog 2 + logn) lll}L\; T ; <

Rsx(Hg) <

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. “Size-independent sample complexity of
neural networks,” Proceedings of the 31st Conference On Learning Theory, PMLR 75:297-299, 2018

40



Growth Function and VC Dimension



Growth Function

* Let H be a family of binary functions mapping from X to {—1, +1}.

» The growth function I1;: N — N is defined by
[My(m) = . max |{(h(x1) h(xm)): h € H}|

SXmEX
»A sample S = (Xl, ...,xm) € X™ is said to be shattered by H if
|{(h(x1); ;h(xm)) h € H}l — m

» The Vapnik—Chervonenkis (VC) dimension of H is the size of the largest set that
can be shattered by H, namely
Vedim(H) = sup{m:I1y(m) = 2™}



(h(x1), h(x2), h(x3)) = (+,+,+) (h(x1), h(x2), h(x3)) = (+,+,—) (h(x1), h(x2), h(x3)) = (+,—+) (h(x1), h(x2), h(x3)) = (+,—,—)

L2 R

(h(x1)» h(x,), h(x3)) =(—++) h(x1) h(x,), h(x3)) =(—+-) (h(x1) h(x,), h(x3)) =(—-+) h(x1) h(x;), h(x3)) =(——--)

a8 av

Let H be the family of binary linear classifiers on R?, then S = (x4, x,, x3) can be shattered by H, since

{(h(x1), h(x2), h(x3)):h € H}| = {(+,+, +), (+,+, =), (+,— ), (+, = =), (= +,+), (= +, =), (=, =, +), (=, —, =)} = 28
[My(3) = max |{(h(x1) h(x,), h(x3)) h € H}| =8

X1,X2,X3€X




VC Dimension for Binary Classifiers with
Hyperplane Decision Boundary

Let H be the family of binary linear classifiers on R? =2VCdim(H) =3

There existsa S = (xq,x,,x3) EachsampleS = (xq, x,, x3,x,) of

of size 3 shattered by H size 4 cannot be shattered by H
= VCdim(H) = 3 =2 VCdim(H) < 4
X1
d xl. o X4
e X3
xz‘ xz. ® X3
Theorem:

Let H be the family of binary classifiers on R with hyperplane
decision boundary, then VCdim(H) = d + 1.

(Mohri 2012, Theorem 3.4)




Relation between Rademacher complexity,
growth function, and VC dimension

* Let H be a family of binary functions * Hence with probability at least 1 — 6,
mapping from X to {—1,+1}. Then
2 log ] sup(R(h) — Rs(h)) < Ry () + |28/
R (H) < |2 1 (m) heH SV = T 2m
m
(Mohri 2012, Corollary 3.1) < JZlog“H(m) +J1°g(1/5)
m 2m
* |f H has VC dimension d, then em
2dlog—=  |log(1/8)
em\? < d
HH(m) < (7) m 2m

(Mohri 2012, Corollary 3.3)




Wish to know more?

Foundations of Machine Learning Probability in High Dimension
M. Mohri, A. Rostamizadeh, and A. Talwalkar Ramon van Handel
MIT Press Princeton University (APC 550 Lecture Notes)

https://web.math.princeton.edu/~rvan/APC550.pdf
Foundations of
Machine Learning

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar



