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The model achieves 5% error 
on 1000 training data, what can 
we say about the testing error?

The testing error on 500 testing 
samples is 8%.

Maybe it’s just because it gets 
lucky on the testing data.

How many data is needed 
to train this model?

Paper X says they successfully 
train the model with dataset 

Y of 10000 samples.Can we have precise statements 
with theoretical guarantees?



Outline

• PAC Learning Framework
➢Training error v.s. generalization error
➢Sample complexity for axis-aligned rectangle concepts.
➢Sample complexity for finitely many hypotheses (consistent/inconsistent cases)

• Rademacher Complexity
➢Loss functions associated to hypothesis set
➢Rademacher complexity and geometrical interpretation
➢Generalization bounds for binary/multi-class classifiers.
➢Rademacher complexity for fully-connected neural network

• Growth Function and VC Dimension
➢Growth function, shattering, VC dimension
➢Generalization bounds



PAC Learning Framework



Motivation

• Given the training set, a learning algorithm generates a hypothesis.

• Run hypothesis on the test set. The results say something about how 
good our hypothesis is. 

➢ How much do the results really tell you?

➢ Can we be certain about how the learning algorithm generalizes? 

✓ We would have to see all the examples. (Not practical)

• Insight: Introduce probabilities to measure degree of certainty and 
correctness. (Valiant 1984)



Computational Learning Theory

• Computational learning theory is a mathematical and theoretical field 
related to analysis of machine learning algorithms.

• We need to seek theory to relate:

➢Probability of successful learning

➢Number of training examples

➢Complexity of hypothesis space

➢Accuracy to which target function is approximated



• Want to use height to distinguish men
and women
➢ Training and testing data drawn from 

the same distribution.

https://ourworldindata.org/human-height

171.5 cm

Target concept function: c(x) 
➢ c(<171.5 cm) = “women”
➢ c(>171.5 cm) = “men”

Unknown!!

• Can never be absolutely certain that we have 
learned correctly our target (hidden) concept 
function. 
➢ There is a non-zero chance that, so far, 

we have only seen a sequence of bad 
examples (E.g., relatively tall women and 
relatively short men)

• It’s generally highly unlikely to see a long 
series of bad examples!

https://ourworldindata.org/human-height


Probably Approximately Correct Learning

• The learner receives samples and must select a generalization function 
(hypothesis) from a certain class of possible functions.

• With high probability an (efficient) learning algorithm will find a 
hypothesis that is approximately identical to the hidden target concept.
➢ Seriously wrong hypotheses can be ruled out almost certainly (with high probability) using a 

“small” number of examples

➢ Any hypothesis that is consistent with a significantly large set of training examples is unlikely to 
be seriously wrong: it must be probably approximately correct (PAC).

➢ Any (efficient) algorithm that returns hypotheses that are PAC is called a PAC-learning algorithm. 
(Formal definition to be introduced later)



PAC Learning Model
• Denote
➢𝒳: The set of all possible examples or instances, also referred as input space.
➢𝒴: The set of all possible labels or target values.
✓ For introductory purposes, assume 𝒴 = −1,+1 (binary classification)

➢Concept 𝑐:𝒳 → 𝒴:
✓ If 𝒴 = −1,+1 , we can identify 𝑐 as the subset of 𝒳 over which it takes value 1.

➢Concept class 𝐶: A set of concepts.
• Learning problem formulation: A learner
➢Considers a fixed set 𝐻 of possible concepts, also referred as hypothesis set.
➢Receives a sample 𝑆 = (𝑥1, … , 𝑥𝑚) of 𝑚 examples drawn i.i.d. according to some fixed 

but unknown distribution 𝐷, as well as the labels 𝑐 𝑥1 , … , 𝑐(𝑥𝑚) based on a fixed
but unknown target concept 𝑐 ∈ 𝐶.

➢Uses the labeled sample 𝑆 to select a hypothesis ℎ𝑆 ∈ 𝐻 that has a small generalization 
error w.r.t. the target concept 𝑐.

What do we refer by generalization error?



Generalization Error v.s. Empirical Error
Definition: Generalization error

Given a hypothesis ℎ ∈ 𝐻, a target concept 𝑐 ∈ 𝐶, and an underlying 
distribution 𝐷, the generalization error (a.k.a. true error, risk) of ℎ is 
defined as

ℛ ℎ = ℙ𝑥~𝐷 ℎ(𝑥) ≠ 𝑐(𝑥) = 𝔼𝑥~𝐷 1ℎ(𝑥)≠𝑐(𝑥)

Definition: Empirical error

Given a hypothesis ℎ ∈ 𝐻, a target concept 𝑐 ∈ 𝐶, and a sample 𝑆 =
(𝑥1, … , 𝑥𝑚), the empirical error or risk of ℎ is defined as

෠ℛ𝑆 ℎ =
1

𝑚
෍

𝑖=1

𝑚

1ℎ(𝑥𝑖)≠𝑐(𝑥𝑖)

Not accessible for the learner

Accessible for the learner

Remark:
Empirical error is an unbiased estimate of generalization error

𝔼𝑆~𝐷𝑚 ෠ℛ𝑆 ℎ = ℛ ℎ



PAC Framework
Definition: PAC-learning

A concept class 𝐶 is said to be PAC-learnable if there exists an algorithm 𝔸 and a polynomial 
function 𝑝𝑜𝑙𝑦(∙,∙) such that for any 𝜖 > 0 and 𝛿 > 0, for all distributions 𝐷 on 𝒳, and for any 

target concept 𝑐 ∈ 𝐶, the following holds for any sample size 𝑚 ≥ 𝑝𝑜𝑙𝑦
1

𝜖
,
1

𝛿
ℙ𝑆~𝐷𝑚 ℛ ℎ𝑆 ≤ 𝜖 ≥ 1 − 𝛿

where ℎ𝑆 ∈ 𝐻 is the hypothesis learned by 𝔸 from sample 𝑆.  We say 𝔸 is a PAC-learning 
algorithm for 𝐶.

Remark:
• The hypothesis returned by PAC-learning algorithm 𝔸 is 
➢ Approximately correct (generalization error at most 𝜖), with
➢ High probability (at least 1 − 𝛿 confidence), after observing

➢ sufficiently many samples (polynomial in 
1

𝜖
and 

1

𝛿
)

• PAC framework is a distribution-free model
➢ No particular assumption on the distribution 𝐷 from which examples are drawn.

• Stationarity assumption: Training set and test sets are drawn from the same distribution.
• PAC deals with the learnability for a concept class 𝐶 and not a particular concept 𝑐.
➢ Assume concept class 𝐶 is known to learner, while the target concept 𝑐 ∈ 𝐶 is unknown.



𝑐

Example: Learning axis-aligned rectangles

• Axis-aligned rectangle concept class:
➢ Input space 𝒳 = ℝ2

➢𝒴 = −1,+1
➢Concept class 𝐶: Collection of all axis-aligned rectangles.

Is 𝐶 PAC-learnable? 

• For a specific concept 𝑐 ∈ 𝐶, a sample 𝑆 may 
look like

If only 𝑆 is observed, how do we guess 𝑐?

• Generalization error of hypothesis ℎ

𝑐

ℎ

generalization 
error

empirical error = 
9

23



Example: Learning axis-aligned rectangles
• Consider the closure algorithm 𝔸:
➢Given sample 𝑆, return ℎ𝑆 as the smallest 

rectangle consistent with 𝑆.

𝑐ℎ𝑆 𝑐ℎ𝑆′

• If one takes more instances, new instances 
may occupy the previously grey areas, 
leading to smaller generalization error.

• The generalization error is due to positive 
instances in 𝑆 not occupying the inner 
edge of 𝑐 (grey area).

If we randomly draw 𝑚 instances, how unlikely will 𝑅 ℎ𝑆 > 𝜖?

➢By definition, ℎ𝑆 is a subset of 𝑐.



Example: Learning axis-aligned rectangles

𝑐

𝐷 = 𝜖/4

𝐷 = 𝜖/4

𝐷 = 𝜖/4 𝐷 = 𝜖/4

• Let 𝑆 be a sample of 𝑚 randomly drawn instances
➢ If 𝑆 coincides with all four rectangles

, then ℛ ℎ𝑆 ≤ 𝜖
➢How likely will things go wrong?

ℙ𝑆~𝐷𝑚 𝑆 ∩ = ∅ = (1 − 𝜖/4)𝑚

ℙ𝑆~𝐷𝑚 𝑆 ∩ = ∅ = (1 − 𝜖/4)𝑚

ℙ𝑆~𝐷𝑚 𝑆 ∩ = ∅ = (1 − 𝜖/4)𝑚

ℙ𝑆~𝐷𝑚 𝑆 ∩ = ∅ = (1 − 𝜖/4)𝑚

✓ Probability of things going wrong at most 

4(1 − 𝜖/4)𝑚≤ 4𝑒−𝑚𝜖/4

• Hence ℙ𝑆~𝐷𝑚 ℛ ℎ𝑆 ≤ 𝜖 ≥ 1 − 4𝑒−
𝑚𝜖

4

➔ ℙ𝑆~𝐷𝑚 ℛ ℎ𝑆 ≤ 𝜖 ≥ 1 − 𝛿 for 𝑚 ≥
4

𝜖
log

4

𝛿

• If 𝐷 𝑐 < 𝜖, then ℛ ℎ𝑆 = 𝐷(𝑐 − ℎ𝑆) ≤ 𝐷(𝑐) < 𝜖.
• Else, consider four rectangles                        along 

the inner edges of 𝑐

𝑐𝑐ℎ𝑆

Sample complexity

Q: What if you cannot find rectangles with 
exactly 𝜖/4 probability mass?

A: See formal proof in next page



Axis-aligned hyper-cube is PAC-learnable
(Formal Proof)

ℙ𝑆~𝐷𝑚 𝑅 ℎ𝑆 ≤ 𝜖 ≥ 1 − 𝛿 for 𝑚 ≥
2𝑛

𝜖
log

2𝑛

𝛿

PAC-learnable

That is, 





Sample complexity for finite hypothesis sets
- consistent case
• Theorem: Let 𝐻 be a finite set of binary classifiers on 𝒳.  Let 𝔸 be an algorithm 

such that for any target concept 𝑐 ∈ 𝐻 and i.i.d. sample 𝑆 of size 𝑚 returns a 
consistent hypothesis 𝔸 𝑆 ∈ 𝐻 such that ෠ℛ𝑆 𝔸 𝑆 = 0. Then

ℙ𝑆~𝐷𝑚 ℛ(𝔸 𝑆 ) ≤ 𝜖 ≥ 1 − 𝐻 𝑒−𝑚𝜖

where 𝐷 is the underlying distribution. In other words,

ℙ𝑆~𝐷𝑚 ℛ(𝔸 𝑆 ) ≤
1

𝑚
log 𝐻 + log

1

𝛿
≥ 1 − 𝛿

Note that the bound holds true regardless of the algorithm 𝔸,  the target concept 
𝑐, or the underlying distribution 𝐷.

ℙ𝑆~𝐷𝑚 ℛ 𝔸 𝑆 ≤ 𝜖 ≥ 1 − 𝛿 for 𝑚 ≥
log 𝐻 +log 1/𝛿

𝜖

Sample complexity

(Mohri 2012, Theorem 2.1) 



• 費小清 wishes to predict whether or not i-phone 10 will 
break if thrown out from the 𝑥’th floor at Taipei 101.

➢ 𝒳 = 1,2, … , 101 (There are 101 floors)

➢ Hypothesis ℎ𝑘: The maximum floor thrown out from which i-
phone 10 will remain intact is floor 𝑘, namely

ℎ𝑘 𝑥 = ቊ
intact , if 𝑥 ≤ 𝑘
broken , if 𝑥 > 𝑘

➢ Hypothesis set 𝐻 = ℎ0, ℎ1, ℎ2, … , ℎ101 .

➢ Target concept c = ℎ𝑘∗ ∈ 𝐻, where 0 ≤ 𝑘∗ ≤ 101 is unknown to 
費小清.

• Suppose 費小清 is interested in the accuracy of the model, 
should the floors be drawn according to distribution 𝐷. 
The (true) risk function is

ℛ ℎ = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋)

Say, if 𝐷 is the uniform distribution, then

ℛ ℎ =
1

101
෍

𝑥=1

101

1ℎ(𝑥)≠𝑐(𝑥)

Example



• 費小清 collects data and train a prediction model

➢ The 𝑖’th experiment:  Randomly choose 𝑋𝑖~𝐷, throw i-phone 10 
from the 𝑋𝑖’th floor, and record the result 𝑌𝑖 (broken/intact).

➢ Empirical risk function for sample 𝑆 = 𝑋1, 𝑌1 , … , 𝑋𝑚, 𝑌𝑚 :

෠ℛ𝑆 ℎ =
1

𝑚
෍

𝑖=1

𝑚

1ℎ(𝑋𝑖)≠𝑌𝑖 =
1

𝑚
෍

𝑖=1

𝑚

1ℎ(𝑋𝑖)≠𝑐(𝑋𝑖)

➢ Based on the collected sample 𝑆, 費小清 applies an algorithm 𝔸
to train a model 𝔸 𝑆 ∈ 𝐻 that achieves zero empirical risk 
෠ℛ𝑆 𝔸 𝑆 = 0, namely 𝔸 𝑆 𝑋𝑖 = 𝑐(𝑋𝑖) for all 𝑖 = 1,… ,𝑚.

• One can guarantee that

ℙ𝑆~𝐷𝑚 ℛ(𝔸 𝑆 ) ≤
1

𝑚
log 𝐻 + log

1

𝛿
≥ 1 − 𝛿

➢ Here 𝐻 = ℎ0, ℎ1, ℎ2, … , ℎ101 = 102, so

ℙ𝑆~𝐷𝑚 ℛ 𝔸 𝑆 ≤
1

𝑚
log(102) + log

1

𝛿
≥ 1 − 𝛿

Example



0 10 20 30 40 50 60 70 80 90 100 target
Target concept 𝑐 (unknown to 費小清)



0 10 20 30 40 50 60 70 80 90 100

intact

broken

target𝔸 𝑆 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

𝑆 = 𝑋1, 𝑌1 , … , 𝑋5, 𝑌5

𝑚 = 5

費小清’s model 𝔸 𝑆

model

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

Assume 𝐷 is uniform distribution

ℛ 𝔸 𝑆 = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋) =
14

101
= 0.1386

ℙ𝑆~𝐷5 ℛ 𝔸 𝑆 ≤
1

5
log(102) + log

1

0.1
≥ 0.9

1.3855



0 10 20 30 40 50 60 70 80 90 100

intact

broken

target𝔸 𝑆 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

𝑆 = 𝑋1, 𝑌1 , … , 𝑋10, 𝑌10

𝑚 = 10

費小清’s model 𝔸 𝑆

model

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

Assume 𝐷 is uniform distribution

ℛ 𝔸 𝑆 = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋) =
14

101
= 0.1386

ℙ𝑆~𝐷5 ℛ 𝔸 𝑆 ≤
1

10
log(102) + log

1

0.1
≥ 0.9

0.6928



0 10 20 30 40 50 60 70 80 90 100

intact

broken

target𝔸 𝑆 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

𝑆 = 𝑋1, 𝑌1 , … , 𝑋20, 𝑌20

𝑚 = 20

費小清’s model 𝔸 𝑆

model

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

Assume 𝐷 is uniform distribution

ℛ 𝔸 𝑆 = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋) =
8

101
= .0792

ℙ𝑆~𝐷5 ℛ 𝔸 𝑆 ≤
1

20
log(102) + log

1

0.1
≥ 0.9

0.3464



0 10 20 30 40 50 60 70 80 90 100

intact

broken

target𝔸 𝑆 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

𝑆 = 𝑋1, 𝑌1 , … , 𝑋30, 𝑌30

𝑚 = 30

費小清’s model 𝔸 𝑆

model

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

Assume 𝐷 is uniform distribution

ℛ 𝔸 𝑆 = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋) =
1

101
= .0099

ℙ𝑆~𝐷5 ℛ 𝔸 𝑆 ≤
1

30
log(102) + log

1

0.1
≥ 0.9

0.2309



0 10 20 30 40 50 60 70 80 90 100

intact

broken

target𝔸 𝑆 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

𝑆 = 𝑋1, 𝑌1 , … , 𝑋40, 𝑌40

𝑚 = 40

費小清’s model 𝔸 𝑆

model

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

Assume 𝐷 is uniform distribution

ℛ 𝔸 𝑆 = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋) =
1

101
= .0099

ℙ𝑆~𝐷5 ℛ 𝔸 𝑆 ≤
1

40
log(102) + log

1

0.1
≥ 0.9

0.1732



0 10 20 30 40 50 60 70 80 90 100

intact

broken

target𝔸 𝑆 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡
𝑐 𝑥 = 𝑖𝑛𝑡𝑎𝑐𝑡

𝑆 = 𝑋1, 𝑌1 , … , 𝑋167, 𝑌167

𝑚 = 167

費小清’s model 𝔸 𝑆

model

𝔸 𝑆 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛
𝑐 𝑥 = 𝑏𝑟𝑜𝑘𝑒𝑛

Assume 𝐷 is uniform distribution

ℛ 𝔸 𝑆 = 𝔼𝑋~𝐷 1ℎ(𝑋)≠𝑐(𝑋) =
0

101
= 0

ℙ𝑆~𝐷5 ℛ 𝔸 𝑆 ≤
1

167
log(102) + log

1

0.1
≥ 0.9

0.0415

4    90    73 



Sample complexity for finite hypothesis sets
- consistent case (Proof)
• Theorem: Let 𝐻 be a finite set of binary classifiers on 𝒳.  Let 𝔸 be an algorithm 

such that for any target concept 𝑐 ∈ 𝐻 and i.i.d. sample 𝑆 of size 𝑚 returns a 
consistent hypothesis 𝔸 𝑆 ∈ 𝐻 such that ෠ℛ𝑆 𝔸 𝑆 = 0. Then

ℙ𝑆~𝐷𝑚 ℛ(𝔸 𝑆 ) ≤ 𝜖 ≥ 1 − 𝐻 𝑒−𝑚𝜖

<෍
ℎ∈𝐻𝜖

1 − 𝜖 𝑚 ≤ 𝐻𝜖 𝑒
−𝑚𝜖

𝒳𝑚

ℎ1
′ 𝑆 = 𝑐 𝑆

ℎ2
′ 𝑆 = 𝑐 𝑆

ℎ3
′ 𝑆 = 𝑐 𝑆

ℎ 𝐻𝜖
′ 𝑆 = 𝑐 𝑆

𝐻𝜖 = ℎ1
′ , … , ℎ 𝐻𝜖

′

Proof: Let 𝐻𝜖 = ℎ ∈ 𝐻:ℛ ℎ > 𝜖 , then

ℙ𝑆~𝐷𝑚 ℛ 𝔸 𝑆 > 𝜖

≤ ℙ𝑆~𝐷𝑚 ∃ℎ ∈ 𝐻𝜖 𝑠. 𝑡. ℎ 𝑆 = 𝑐 𝑆

= ℙ𝑆~𝐷𝑚 𝔸 𝑆 ∈ 𝐻𝜖

≤෍
ℎ∈𝐻𝜖

ℙ𝑆~𝐷𝑚 ℎ 𝑆 = 𝑐 𝑆



Empirical Risk Minimization
• Let 𝐻 be a family of hypotheses.  Let ℎ∗ ∈ 𝐻 be the optimal hypothesis with 

the minimum (true) risk among 𝐻:
ℎ∗ ∈ argmin

ℎ∈𝐻
ℛ(ℎ)

ℎ𝑆
𝐸𝑅𝑀 may be suboptimal, but what is the gap?

ℛ ℎ𝑆
𝐸𝑅𝑀 − ℛ ℎ∗ = ℛ ℎ𝑆

𝐸𝑅𝑀 − ෠ℛ𝑆 ℎ𝑆
𝐸𝑅𝑀 + ෠ℛ𝑆 ℎ𝑆

𝐸𝑅𝑀 −ℛ ℎ∗

≤ ℛ ℎ𝑆
𝐸𝑅𝑀 − ෠ℛ𝑆 ℎ𝑆

𝐸𝑅𝑀 + ෠ℛ𝑆 ℎ∗ − ℛ ℎ∗

≤ 2 sup
ℎ∈𝐻

෠ℛ𝑆 ℎ − ℛ ℎ

Can we bound this quantity?

• Empirical Risk Minimization (ERM)
Since one cannot evaluate the risk function ℛ ∙ directly, one may instead 
approximate ℛ by the empirical risk ෠ℛ𝑆 evaluated over sample 𝑆, and 
approximate ℎ∗ by the hypothesis ℎ𝑆

𝐸𝑅𝑀 that minimizes the empirical risk

ℎ𝑆
𝐸𝑅𝑀 ∈ argmin

ℎ∈𝐻

෠ℛ𝑆(ℎ)



Sample complexity for finite hypothesis sets
- inconsistent case
• Theorem: Let 𝐻 be a finite set of binary classifiers on 𝒳, then

ℙ𝑆~𝐷𝑚 max
ℎ∈𝐻

෠ℛ𝑆 ℎ − ℛ ℎ < 𝜖 ≥ 1 − 2 𝐻 𝑒−2𝑚𝜖2

where 𝐷 is the underlying distribution. In other words,

ℙ𝑆~𝐷𝑚 max
ℎ∈𝐻

෠ℛ𝑆 ℎ − ℛ ℎ <
log 𝐻 + log 2/𝛿

2𝑚
≥ 1 − 𝛿

Note that the bound holds true regardless of the underlying distribution 𝐷.

ℙ𝑆~𝐷𝑚 max
ℎ∈𝐻

෠ℛ𝑆 ℎ − ℛ ℎ < 𝜖 ≥ 1 − 𝛿 for 𝑚 ≥
log 𝐻 +log 2/𝛿

2𝜖2

Sample complexity

The bound of gap between generalization 
error and training error over all hypotheses 

(Mohri 2012, Theorem 2.2) 



Rademacher Complexity
A useful tool to derive non-trivial generalization bounds when 𝐻 = ∞



Loss functions associated to hypothesis set
• Let 𝐻 be the hypothesis set of functions mapping from input 

space 𝒳 to output space 𝒴.

• Let 𝐿(𝑦, ො𝑦) be the loss function between prediction 𝑦 ∈ 𝒴 and 
ground truth ො𝑦 ∈ 𝒴.

• To each hypothesis ℎ ∈ 𝐻, we can associate a function 𝑔 that 
maps 𝑥, ො𝑦 ∈ 𝒳 × 𝒴 to 𝐿(ℎ(𝑥), ො𝑦). In other words, 𝑔 𝒙, ො𝑦
evaluates the loss ℎ suffers given input 𝒙 and ground truth ො𝑦.

• Denote 𝐺 as the collection of all such functions 𝑔 associated to 
some ℎ ∈ 𝐻.

𝐻 𝐺
ℎ1

𝑔1

ℎ2
ℎ3

𝑔2

𝑔3

𝑔𝜃 𝒙, ො𝑦 = 𝐿 ℎ𝜃 𝒙 , ො𝑦



Loss functions associated to hypothesis set
➢Example: The hypothesis set of all linear binary classifiers on ℝ𝑑

can be written as
𝐻 = ℎ𝒘,𝑏: 𝒘 ∈ ℝ𝑑 , 𝑏 ∈ ℝ ,

where each ℎ𝒘,𝑏 is a binary linear classifier
ℎ𝒘,𝑏 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙 + 𝑏

Suppose we adopt the 0-1 loss function
𝐿 𝑦, ො𝑦 = 1 𝑦 ≠ ො𝑦

We can associate each hypothesis ℎ𝒘,𝑏 ∈ 𝐻 with 𝑔𝒘,𝑏, as given by
𝑔𝒘,𝑏 𝒙, ො𝑦 = 𝐿 ℎ𝒘,𝑏 𝒙 , ො𝑦 = 1 ℎ𝒘,𝑏 𝒙 ≠ ො𝑦



Loss functions associated to hypothesis set
➢Example: The hypothesis set pertaining to a neural 

network 
𝐻 = ℎ𝜃: 𝜃 ∈ Θ ,

where 𝜃 = 𝑾𝑙 , 𝒃𝑙 𝑙=1
𝐿 is the parameter of all 

weights and biases, and

ℎ𝜃 𝑥 = 𝜎 𝜎 b1W1 x +𝜎 b2W2 + bLWL +… …

Suppose we consider the cross entropy loss

𝐿 𝑦, ො𝑦 = −෍

𝑘=1

𝐾

ො𝑦 𝑘 log 𝑦 𝑘

We can associate each hypothesis ℎ𝜃 ∈ 𝐻 with 𝑔𝜃, as given by

𝑔𝜃 𝒙, ො𝑦 = 𝐿 ℎ𝜃 𝒙 , ො𝑦 = −෍

𝑘=1

𝐾

ො𝑦 𝑘 log ℎ𝜃
𝑘

𝒙



• 𝐺 can be interpreted as the family of loss functions 
associated to 𝐻.

• To minimize the empirical loss evaluated over 
training data 𝑥𝑖 , ො𝑦𝑖 𝑖=1

𝑚 is equivalent to

inf
ℎ∈𝐻

෍

𝑖=1

𝑚

𝐿 ℎ 𝑥𝑖 , ො𝑦𝑖 = inf
𝑔∈𝐺

෍

𝑖=1

𝑚

𝑔 𝑥𝑖 , ො𝑦𝑖

• If 𝐺 is “big”, it is more likely to achieve small 
empirical loss, but also more likely to overfit.

Set of Loss Functions and Empirical Loss Minimization

𝑔𝜃 𝒙, ො𝑦 = 𝐿 ℎ𝜃 𝒙 , ො𝑦

• How to measure the “size” of 𝐺? Rademacher complexity

Generalization bound

Denote 𝒵 = 𝒳 ×𝒴
and 𝑧𝑖 = 𝑥𝑖 , ො𝑦𝑖

= inf
𝑔∈𝐺

෍

𝑖=1

𝑚

𝑔 𝑧𝑖

• How does the “size” of 𝐺 relates to “overfitting”?



• Let 𝐺 be a family of functions mapping from 𝒵 to [𝑎, 𝑏] and 𝑆 =
(𝑧1, … , 𝑧𝑚) a fixed sample of size 𝑚 with elements in 𝒵. Then the 
empirical Rademacher complexity of 𝐺 with respect to the sample 𝑆 is 
defined as

෡ℜ𝑆 𝐺 = 𝔼𝝈 sup
𝑔∈𝐺

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖𝑔 𝑧𝑖

where 𝝈 = (𝜎1, … , 𝜎𝑚), with 𝜎𝑖s being independent uniform random 
variables taking values in −1,+1 .  The random variables 𝜎𝑖 are called 
Rademacher variables.

• Let 𝐷 denote the distribution according to which samples are drawn.  For 
any 𝑚 ∈ ℕ, the Rademacher complexity of 𝐺 is the expectation of the 
empirical Rademacher complexity over all samples of size 𝑚 drawn 
according to 𝐷:

ℜ𝑚 𝐺 = 𝔼𝑆~𝐷𝑚 ෡ℜ𝑆 𝐺

Rademacher Complexity



Suppose we have two samples S = 𝑧1, 𝑧2 , then

෡ℜ𝑆 𝐺 = 𝔼𝝈 sup
𝑔∈𝐺

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖𝑔 𝑧𝑖
Geometric Interpretation

෡ℜ𝑆 𝐺 = 𝔼𝝈 sup
𝑔∈𝐺

1

2
𝜎1𝑔 𝑧1 + 𝜎2𝑔 𝑧2

=
1

4

sup
𝑔∈𝐺

1

2
𝑔 𝑧1 + 𝑔 𝑧2 + sup

𝑔∈𝐺

1

2
−𝑔 𝑧1 − 𝑔 𝑧2

+sup
𝑔∈𝐺

1

2
𝑔 𝑧1 − 𝑔 𝑧2 + sup

𝑔∈𝐺

1

2
−𝑔 𝑧1 + 𝑔 𝑧2

𝑔 𝑧1

𝑔 𝑧2

𝐺

1

2
sup
𝑔∈𝐺

1

2
𝑔 𝑧1 + 𝑔 𝑧2 + sup

𝑔∈𝐺

1

2
−𝑔 𝑧1 − 𝑔 𝑧2

1

2
sup
𝑔∈𝐺

1

2
𝑔 𝑧1 − 𝑔 𝑧2 + sup

𝑔∈𝐺

1

2
−𝑔 𝑧1 + 𝑔 𝑧2
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margin

Loss

0-1 loss

Binary Classifier Generalization Bound
• Let 𝒳 be input space, 𝒴 = −1,+1 be output space, 
𝐻 be a hypothesis set. If 0-1 loss is concerned, then

ℙ sup
ℎ∈𝐻

ℛ ℎ − ෠ℛ𝑆(ℎ) ≤ ℜ𝑚 𝐻 +
log(1/𝛿)

2𝑚
≥ 1 − δ

where ℜ𝑚 𝐻 = 𝔼𝑆~𝐷𝑚 ෡ℜ𝑆 𝐻 , for which 𝐷 is the 
underlying distribution on 𝒳, and

෡ℜ𝑆 𝐻 = 𝔼𝝈 sup
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖ℎ 𝑥𝑖

for 𝑆 = (𝑥1, … , 𝑥𝑚)

• Roughly speaking, Rademacher complexity bounds 
the gap between training error and true error.

True loss Training loss

Sample size Confidence

Hypothesis
complexity

ො𝑦ℎ 𝑥

(Mohri 2012, Theorem 3.2) 
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margin

Loss

0-1 loss

hinge loss (slope -1/𝜌)

True loss Training loss

Sample size Confidence

Hypothesis
complexity

Multi-class Classifier Generalization Bound
• Let 𝒳 be input space, 𝒴 = 1,… , 𝑘 be output space, 
𝐻 be a hypothesis set. If hinge loss is concerned, then

ℙ sup
ℎ∈𝐻

ℛ ℎ − ෠ℛ𝑆(ℎ) ≤
2𝑘2

𝜌
ℜ𝑚 𝜓 𝐻 +

log(1/𝛿)

2𝑚
≥ 1 − δ

where 𝜓 𝐻 = 𝑥 ↦ ℎ 𝑥, 𝑦 : ℎ ∈ 𝐻, 𝑦 ∈ 𝒴 .

• More elaborately, ℜ𝑚 𝜓 𝐻 = 𝔼𝑆~𝐷𝑚 ෠ℛ𝑆 𝜓 𝐻 , 
for which 𝐷 is the underlying distribution on 𝒳, and

෡ℜ𝑆 𝜓 𝐻 = 𝔼𝝈 sup
ℎ∈𝐻,𝑦∈𝒴

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖ℎ 𝑥𝑖 , 𝑦

for 𝑆 = (𝑥1, … , 𝑥𝑚)

ℎ 𝑥, ො𝑦 − max
𝑦≠ ො𝑦

ℎ 𝑥, 𝑦

(Mohri 2012, Theorem 8.1) 
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Noah Golowich, Alexander Rakhlin, and Ohad Shamir. “Size-independent sample complexity of 
neural networks,” Proceedings of the 31st Conference On Learning Theory, PMLR 75:297-299, 2018.

Rademacher complexity bounds

Rademacher complexity for Neural Network



Growth Function and VC Dimension



• Let 𝐻 be a family of binary functions mapping from 𝒳 to −1,+1 .

➢The growth function Π𝐻: ℕ → ℕ is defined by
Π𝐻 𝑚 = max

𝑥1,…,𝑥𝑚∈𝒳
ℎ 𝑥1 , … , ℎ 𝑥𝑚 : ℎ ∈ 𝐻

➢A sample 𝑆 = 𝑥1, … , 𝑥𝑚 ∈ 𝒳𝑚 is said to be shattered by 𝐻 if
ℎ 𝑥1 , … , ℎ 𝑥𝑚 : ℎ ∈ 𝐻 = 2𝑚

➢The Vapnik–Chervonenkis (VC) dimension of 𝐻 is the size of the largest set that 
can be shattered by 𝐻, namely

𝑉𝐶𝑑𝑖𝑚 𝐻 = sup 𝑚:Π𝐻 𝑚 = 2𝑚

Growth Function



Let 𝐻 be the family of binary linear classifiers on ℝ2, then 𝑆 = 𝑥1, 𝑥2, 𝑥3 can be shattered by 𝐻, since
ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 : ℎ ∈ 𝐻 = +,+,+ , +, +,− , +,−,+ , +, −,− , −,+,+ , −, +,− , −,−, + , −,−,− = 23

𝑥1

𝑥2

𝑥3

ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (−,+,+)

ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (+,−,+)ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (+,+,+) ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (+,+,−) ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (+,−,−)

ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (−,+,−) ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (−,−,+) ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 = (−,−,−)

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

𝑥3

Π𝐻 3 = max
𝑥1,𝑥2,𝑥3∈𝒳

ℎ 𝑥1 , ℎ 𝑥2 , ℎ 𝑥3 : ℎ ∈ 𝐻 = 8



𝑥1

𝑥2

𝑥3

𝑥1

𝑥2 𝑥3

𝑥4

Let 𝐻 be the family of binary linear classifiers on ℝ2

There exists a 𝑆 = 𝑥1, 𝑥2, 𝑥3
of size 3 shattered by 𝐻

Each sample 𝑆 = 𝑥1, 𝑥2, 𝑥3, 𝑥4 of 
size 4 cannot be shattered by 𝐻

➔𝑉𝐶𝑑𝑖𝑚 𝐻 = 3

Theorem:
Let 𝐻 be the family of binary classifiers on ℝ𝑑 with hyperplane 
decision boundary, then 𝑉𝐶𝑑𝑖𝑚 𝐻 = 𝑑 + 1.

VC Dimension for Binary Classifiers with 
Hyperplane Decision Boundary

➔ 𝑉𝐶𝑑𝑖𝑚 𝐻 ≥ 3 ➔ 𝑉𝐶𝑑𝑖𝑚 𝐻 < 4

(Mohri 2012, Theorem 3.4) 



Relation between Rademacher complexity, 
growth function, and VC dimension

• Let 𝐻 be a family of binary functions 
mapping from 𝒳 to −1,+1 . Then

ℜ𝑚 𝐻 ≤
2 logΠ𝐻 𝑚

𝑚

(Mohri 2012, Corollary 3.1) 

(Mohri 2012, Corollary 3.3) 

• Hence with probability at least 1 − 𝛿,

sup
ℎ∈𝐻

ℛ ℎ − ෠ℛ𝑆(ℎ) ≤ ℜ𝑚 𝐻 +
log(1/𝛿)

2𝑚

≤
2 logΠ𝐻 𝑚

𝑚
+

log(1/𝛿)

2𝑚

≤
2𝑑 log

𝑒𝑚
𝑑

𝑚
+

log(1/𝛿)

2𝑚

• If 𝐻 has VC dimension 𝑑, then

Π𝐻 𝑚 ≤
𝑒𝑚

𝑑

𝑑
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