Probably Approximately Correct Learning

Pei-Yuan Wu

Dept. Electrical Engineering

National Taiwan University

The model achieves 5% error on 1000 training data, what can we say about the testing error?

The testing error on 500 testing samples is 8%.

Maybe it's just because it gets lucky on the testing data.

How many data is needed to train this model?

Can we have precise statements with theoretical guarantees?

Paper X says they successfully train the model with dataset Y of 10000 samples.

Outline

• PAC Learning Framework

- > Training error v.s. generalization error
- > Sample complexity for axis-aligned rectangle concepts.
- Sample complexity for finitely many hypotheses (consistent/inconsistent cases)

• Rademacher Complexity

- Loss functions associated to hypothesis set
- ➢ Rademacher complexity and geometrical interpretation
- ➤ Generalization bounds for binary/multi-class classifiers.
- ➢ Rademacher complexity for fully-connected neural network

Growth Function and VC Dimension

- ➢ Growth function, shattering, VC dimension
- ➤ Generalization bounds

PAC Learning Framework

Motivation

- Given the *training set*, a *learning algorithm* generates a *hypothesis*.
- Run *hypothesis* on the *test set*. The results say *something* about how *good our hypothesis is*.
 - How much do the results really tell you?
 - Can we be *certain* about how the learning algorithm *generalizes*?
 - ✓ We would have to see *all the examples*. (Not practical)
- Insight: Introduce *probabilities to measure degree of certainty and correctness.* (Valiant 1984)

Computational Learning Theory

- Computational learning theory is a *mathematical* and *theoretical* field related to *analysis* of machine learning *algorithms*.
- We need to seek theory to relate:
 - Probability of successful learning
 - >Number of training examples
 - Complexity of hypothesis space
 - Accuracy to which target function is approximated

- Want to use height to distinguish men and women
 - Training and testing data drawn from the same distribution.
- Can never be absolutely certain that we have learned correctly our target (hidden) concept function.
 - There is a non-zero chance that, so far, we have only seen a sequence of bad examples (E.g., relatively tall women and relatively short men)
- It's generally highly unlikely to see a long series of bad examples!

Probably Approximately Correct Learning

- The learner receives samples and must select a generalization function (hypothesis) from a certain class of possible functions.
- With high probability an (efficient) learning algorithm will find a hypothesis that is approximately identical to the hidden target concept.
 - Seriously wrong hypotheses can be ruled out almost certainly (with high probability) using a "small" number of examples
 - Any hypothesis that is consistent with a significantly large set of training examples is unlikely to be seriously wrong: it must be probably approximately correct (PAC).
 - Any (efficient) algorithm that returns hypotheses that are PAC is called a PAC-learning algorithm. (Formal definition to be introduced later)

PAC Learning Model

• Denote

 $\succ X$: The set of all possible examples or instances, also referred as input space.

 $\succ \mathcal{Y}$: The set of all possible labels or target values.

✓ For introductory purposes, assume $\mathcal{Y} = \{-1, +1\}$ (binary classification)

 \succ Concept $c: \mathcal{X} \rightarrow \mathcal{Y}:$

✓ If $\mathcal{Y} = \{-1, +1\}$, we can identify *c* as the subset of \mathcal{X} over which it takes value 1.

Concept class C: A set of concepts.

• Learning problem formulation: A learner

 \succ Considers a fixed set H of possible concepts, also referred as hypothesis set.

- ➤ Receives a sample $S = (x_1, ..., x_m)$ of m examples drawn i.i.d. according to some fixed but unknown distribution D, as well as the labels $(c(x_1), ..., c(x_m))$ based on a fixed but unknown target concept $c \in C$.
- \succ Uses the labeled sample S to select a hypothesis $h_S \in H$ that has a small generalization error w.r.t. the target concept c.

What do we refer by generalization error?

Generalization Error v.s. Empirical Error

Definition: Generalization error

Given a hypothesis $h \in H$, a target concept $c \in C$, and an underlying distribution D, the generalization error (a.k.a. true error, risk) of h is defined as

$$\mathcal{R}(h) = \mathbb{P}_{x \sim D}[h(x) \neq c(x)] = \mathbb{E}_{x \sim D}\left[\mathbf{1}_{h(x) \neq c(x)}\right]$$

Definition: Empirical error

Not accessible for the learner

Given a hypothesis $h \in H$, a target concept $c \in C$, and a sample $S = (x_1, \dots, x_m)$, the empirical error or risk of h is defined as $\widehat{\mathcal{R}}_S(h) = \frac{1}{m} \sum_{i=1}^m 1_{h(x_i) \neq c(x_i)}$ Accessible for the learner

Remark:

Empirical error is an unbiased estimate of generalization error $\mathbb{E}_{S \sim D^m} [\hat{\mathcal{R}}_S(h)] = \mathcal{R}(h)$

PAC Framework

Definition: PAC-learning

A concept class *C* is said to be PAC-learnable if there exists an algorithm \mathbb{A} and a polynomial function $poly(\cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions *D* on \mathcal{X} , and for any target concept $c \in C$, the following holds for any sample size $m \ge poly\left(\frac{1}{\epsilon}, \frac{1}{\delta}\right)$

 $\mathbb{P}_{S \sim D^m}[\mathcal{R}(h_S) \leq \epsilon] \geq 1 - \delta$

where $h_S \in H$ is the hypothesis learned by \mathbb{A} from sample S. We say \mathbb{A} is a PAC-learning algorithm for C.

Remark:

- The hypothesis returned by PAC-learning algorithm \mathbb{A} is
 - > Approximately correct (generalization error at most ϵ), with
 - > High probability (at least 1δ confidence), after observing
 - > sufficiently many samples (polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$)
- PAC framework is a distribution-free model
 - \succ No particular assumption on the distribution D from which examples are drawn.
- Stationarity assumption: Training set and test sets are drawn from the same distribution.
- PAC deals with the learnability for a concept class *C* and not a particular concept *c*.
 - Assume concept class C is known to learner, while the target concept $c \in C$ is unknown.

Example: Learning axis-aligned rectangles

• Axis-aligned rectangle concept class:

 \succ Input space $\mathcal{X} = \mathbb{R}^2$

 $\succ \mathcal{Y} = \{-1, +1\}$

Concept class C: Collection of all axis-aligned rectangles.

• For a specific concept $c \in C$, a sample S may look like •

Is C PAC-learnable?

If only S is observed, how do we guess c?

Example: Learning axis-aligned rectangles

- Consider the closure algorithm A:
 ➤ Given sample S, return h_S as the smallest rectangle consistent with S.
 ➤ By definition, h_S is a subset of c.
- The generalization error is due to positive instances in *S* not occupying the inner edge of *c* (grey area).

 If one takes more instances, new instances may occupy the previously grey areas, leading to smaller generalization error.

If we randomly draw m instances, how unlikely will $R(h_S) > \epsilon$?

Example: Learning axis-aligned rectangles

- If $D(c) < \epsilon$, then $\mathcal{R}(h_S) = D(c h_S) \le D(c) < \epsilon$.
- Else, consider four rectangles along the inner edges of *c*

Q: What if you cannot find rectangles with exactly ε/4 probability mass?
A: See formal proof in next page

С

Axis-aligned hyper-cube is PAC-learnable (Formal Proof)

Theorem 7.2. Consider input space $\mathcal{X} = \mathbb{R}^n$, and the concept class C is the set of all face-aligned closed hypercubes lying in \mathbb{R}^n . That is, each concept c is the set of points inside/on a particular face-aligned hypercube. Consider algorithm \mathbb{A} as follows: Given a labeled sample S, the algorithm returns the tightest facealigned closed hypercube V_S consisting the points labeled with 1. Then

$$\mathbb{P}[\mathcal{R}^{err}(V_S) \le \epsilon] \ge 1 - 2ne^{-\frac{m\epsilon}{2n}}$$

In other words, for any $\delta > 0$,

$$\mathbb{P}\left[\mathcal{R}^{err}(V_S) \le \frac{2n}{m}\log\frac{2n}{\delta}\right] \ge 1 - \delta$$

That is,
$$\mathbb{P}_{S\sim D^m}[R(h_S) \le \epsilon] \ge 1 - \delta$$
 for $m \ge \frac{2n}{\epsilon} \log \frac{2n}{\delta}$
PAC-learnable

Proof. Let $V \in C$ be a target concept, which is a face-aligned closed hypercube defined by $V = \{\mathbf{x} \in \mathbb{R}^n : x^{(k)} \in [a_k, b_k], \forall k = 1, \dots, n\}$. By definition, $V_S \subset V$. Since $\mathcal{R}^{err}(V_S) \leq \mathbb{P}[\mathbf{x} \in V]$, we may assume $\mathbb{P}[\mathbf{x} \in V] > \epsilon$. Define hypercubes

$$v_{k,1} = \{ \mathbf{x} \in V : x^{(k)} \in [a_k, s_k] \}, \quad \bar{v}_{k,1} = \{ \mathbf{x} \in V : x^{(k)} \in [a_k, s_k) \}$$
$$v_{k,2} = \{ \mathbf{x} \in V : x^{(k)} \in [t_k, b_k] \}, \quad \bar{v}_{k,2} = \{ \mathbf{x} \in V : x^{(k)} \in (t_k, b_k] \}$$

where

$$s_k = \inf\{s : \mathbb{P}[\{\mathbf{x} \in V : x^{(k)} \in [a_k, s]\}] \ge \frac{\epsilon}{2n}\}$$
$$t_k = \inf\{t : \mathbb{P}[\{\mathbf{x} \in V : x^{(k)} \in [t, b_k]\}] \ge \frac{\epsilon}{2n}\}$$

Then $\mathbb{P}[\mathbf{x} \in v_{k,\ell}] \geq \frac{\epsilon}{2n}$, $\mathbb{P}[\mathbf{x} \in \overline{v}_{k,\ell}] \leq \frac{\epsilon}{2n}$, $\forall k = 1, \cdots, n, \ell = 1, 2$. Define $V_0 = \{\mathbf{x} \in \mathbb{R}^n : x^{(k)} \in [s_k, t_k], \forall k = 1, \cdots, n\}$. Then $V_0 \subset V_S \subset V$ implues

$$\mathcal{R}^{err}(V_S) \le \mathbb{P}\left[\mathbf{x} \in \bigcup_{k=1}^n \bigcup_{\ell=1}^2 \bar{v}_{k,\ell}\right] \le \sum_{k=1}^n \sum_{\ell=1}^2 \mathbb{P}[\mathbf{x} \in \bar{v}_{k,\ell}] \le \epsilon$$

Note that

$$\mathbb{P}[V_0 \not\subset V_S] = \mathbb{P}\left[\bigcup_{k=1}^n \bigcup_{\ell=1}^2 (S \cap v_{k,\ell} = \emptyset)\right] \le \sum_{k=1}^n \sum_{\ell=1}^2 \mathbb{P}[S \cap v_{k,\ell} = \emptyset] \le 2n\left(1 - \frac{\epsilon}{2n}\right)^m$$

Therefore

$$\mathbb{P}[\mathcal{R}^{err}(V_S) \le \epsilon] \ge \mathbb{P}[V_0 \subset V_S \subset V] \ge 1 - 2n\left(1 - \frac{\epsilon}{2n}\right)^m \ge 1 - 2ne^{-\frac{m\epsilon}{2n}}$$

Sample complexity for finite hypothesis sets - consistent case

• **Theorem:** Let H be a finite set of binary classifiers on \mathcal{X} . Let \mathbb{A} be an algorithm such that for any target concept $c \in H$ and i.i.d. sample S of size m returns a consistent hypothesis $\mathbb{A}(S) \in H$ such that $\hat{\mathcal{R}}_S(\mathbb{A}(S)) = 0$. Then $\mathbb{P}_{S \sim D^m}[\mathcal{R}(\mathbb{A}(S)) \leq \epsilon] \geq 1 - |H|e^{-m\epsilon}$

where D is the underlying distribution. In other words, $\mathbb{P}_{S\sim D^m}\left[\mathcal{R}(\mathbb{A}(S)) \leq \frac{1}{m}\left(\log|H| + \log\frac{1}{\delta}\right)\right] \geq 1 - \delta \quad \text{(Mohri 2012, Theorem 2.1)}$

Note that the bound holds true regardless of the algorithm A, the target concept c, or the underlying distribution D.

$$\mathbb{P}_{S \sim D}m\Big[\mathcal{R}\big(\mathbb{A}(S)\big) \leq \epsilon\Big] \geq 1 - \delta \text{ for } m \geq \frac{\log|H| + \log(1/\delta)}{\epsilon}$$

Example

- 費小清 wishes to predict whether or not i-phone 10 will break if thrown out from the x'th floor at Taipei 101.
 - > $X = \{1, 2, ..., 101\}$ (There are 101 floors)
 - > Hypothesis h_k : The maximum floor thrown out from which iphone 10 will remain intact is floor k, namely

 $h_k(x) = \begin{cases} \text{intact} & \text{, if } x \le k \\ \text{broken} & \text{, if } x > k \end{cases}$

- ➢ Hypothesis set $H = \{h_0, h_1, h_2, ..., h_{101}\}.$
- ▶ Target concept $c = h_{k^*} \in H$, where $0 \le k^* \le 101$ is unknown to 費小清.
- Suppose 費小清 is interested in the accuracy of the model, should the floors be drawn according to distribution D. The (true) risk function is

 $\mathcal{R}(h) = \mathbb{E}_{X \sim D} \big[\mathbb{1}_{h(X) \neq c(X)} \big]$

Say, if *D* is the uniform distribution, then $\mathcal{R}(h) = \frac{1}{101} \sum_{x=1}^{101} 1_{h(x) \neq c(x)}$

Example

- 費小清 collects data and train a prediction model
 - The *i*'th experiment: Randomly choose $X_i \sim D$, throw i-phone 10 from the X_i 'th floor, and record the result Y_i (broken/intact).

$$Final \text{Empirical risk function for sample } S = \left((X_1, Y_1), \dots, (X_m, Y_m) \right):$$
$$\widehat{\mathcal{R}}_S(h) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{h(X_i) \neq Y_i} = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{h(X_i) \neq c(X_i)}$$

- ▶ Based on the collected sample *S*, 費小清 applies an algorithm A to train a model $A(S) \in H$ that achieves zero empirical risk $\widehat{\mathcal{R}}_{S}(A(S)) = 0$, namely $A(S)(X_{i}) = c(X_{i})$ for all i = 1, ..., m.
- One can guarantee that

$$\mathbb{P}_{S \sim D^m}\left[\mathcal{R}(\mathbb{A}(S)) \leq \frac{1}{m}\left(\log|H| + \log\frac{1}{\delta}\right)\right] \geq 1 - \delta$$

Here |H| = |{h₀, h₁, h₂, ..., h₁₀₁}| = 102, so
$$\mathbb{P}_{S \sim D^m} \left[\mathcal{R}(\mathbb{A}(S)) \leq \frac{1}{m} \left(\log(102) + \log \frac{1}{\delta} \right) \right] \geq 1 - \delta$$

Sample complexity for finite hypothesis sets - consistent case (Proof)

• **Theorem:** Let H be a finite set of binary classifiers on \mathcal{X} . Let \mathbb{A} be an algorithm such that for any target concept $c \in H$ and i.i.d. sample S of size m returns a consistent hypothesis $\mathbb{A}(S) \in H$ such that $\widehat{\mathcal{R}}_{S}(\mathbb{A}(S)) = 0$. Then $\mathbb{P}_{S \sim D}^{m}[\mathcal{R}(\mathbb{A}(S)) \leq \epsilon] \geq 1 - |H|e^{-m\epsilon}$

 $\begin{array}{l} \underline{Proof:} \ \text{Let } H_{\epsilon} = \{h \in H: \mathcal{R}(h) > \epsilon\}, \text{then} \\ \mathbb{P}_{S \sim D^{m}} [\mathcal{R}(A(S)) > \epsilon] = \mathbb{P}_{S \sim D^{m}} [A(S) \in H_{\epsilon}] \\ \mathcal{X}^{m} & \leq \mathbb{P}_{S \sim D^{m}} [\exists h \in H_{\epsilon} \ s. t. \ h(S) = c(S)] \\ \stackrel{h_{1}'(S) = c(S)}{= c(S)} & \leq \sum_{h \in H_{\epsilon}} \mathbb{P}_{S \sim D^{m}} [h(S) = c(S)] \\ < \sum_{h \in H_{\epsilon}} (1 - \epsilon)^{m} \leq |H_{\epsilon}| e^{-m\epsilon} \\ H_{\epsilon} = \{h_{1}', \dots, h_{|H_{\epsilon}|}'\} \end{array}$

Empirical Risk Minimization

 Let H be a family of hypotheses. Let h^{*} ∈ H be the optimal hypothesis with the minimum (true) risk among H:

```
h^* \in \operatorname*{argmin}_{h \in H} \mathcal{R}(h)
```

• Empirical Risk Minimization (ERM)

Since one cannot evaluate the risk function $\mathcal{R}(\cdot)$ directly, one may instead approximate \mathcal{R} by the empirical risk $\hat{\mathcal{R}}_S$ evaluated over sample S, and approximate h^* by the hypothesis h_S^{ERM} that minimizes the empirical risk $h_S^{ERM} \in \operatorname{argmin} \hat{\mathcal{R}}_S(h)$

 $h_S^{ERM} \in \underset{h \in H}{\operatorname{argmin}} \widehat{\mathcal{R}}_S(h)$

 h_S^{ERM} may be suboptimal, but what is the gap?

$$\begin{aligned} \mathcal{R}(h_{S}^{ERM}) - \mathcal{R}(h^{*}) &= \left(\mathcal{R}(h_{S}^{ERM}) - \hat{\mathcal{R}}_{S}(h_{S}^{ERM})\right) + \left(\hat{\mathcal{R}}_{S}(h_{S}^{ERM}) - \mathcal{R}(h^{*})\right) \\ &\leq \left(\mathcal{R}(h_{S}^{ERM}) - \hat{\mathcal{R}}_{S}(h_{S}^{ERM})\right) + \left(\hat{\mathcal{R}}_{S}(h^{*}) - \mathcal{R}(h^{*})\right) \\ &\leq 2\sup_{h \in H} \left|\hat{\mathcal{R}}_{S}(h) - \mathcal{R}(h)\right| \\ & \quad Can we bound this quantity? \end{aligned}$$

Sample complexity for finite hypothesis sets - inconsistent case

• **Theorem:** Let *H* be a finite set of binary classifiers on \mathcal{X} , then $\mathbb{P}_{S \sim D^m} \left[\max_{h \in H} \left| \widehat{\mathcal{R}}_S(h) - \mathcal{R}(h) \right| < \epsilon \right] \ge 1 - 2|H|e^{-2m\epsilon^2}$

where D is the underlying distribution. In other words,

$$\mathbb{P}_{S \sim D^{m}} \left| \max_{h \in H} \left| \hat{\mathcal{R}}_{S}(h) - \mathcal{R}(h) \right| < \sqrt{\frac{\log|H| + \log(2/\delta)}{2m}} \right| \ge 1 - \delta$$
(Mohri 2012, Theorem 2.2)
The bound of gap between generalization

error and training error over all hypotheses

Note that the bound holds true regardless of the underlying distribution *D*. *Sample complexity*

$$\mathbb{P}_{S \sim D^m} \left[\max_{h \in H} \left| \hat{\mathcal{R}}_S(h) - \mathcal{R}(h) \right| < \epsilon \right] \ge 1 - \delta \text{ for } m \ge \frac{\log|H| + \log(2/\delta)}{2\epsilon^2}$$

Rademacher Complexity

A useful tool to derive non-trivial generalization bounds when $|H| = \infty$

Loss functions associated to hypothesis set

- Let H be the hypothesis set of functions mapping from input space \mathcal{X} to output space \mathcal{Y} .
- Let $L(y, \hat{y})$ be the loss function between prediction $y \in \mathcal{Y}$ and ground truth $\hat{y} \in \mathcal{Y}$.
- To each hypothesis $h \in H$, we can associate a function g that maps $(x, \hat{y}) \in \mathcal{X} \times \mathcal{Y}$ to $L(h(x), \hat{y})$. In other words, $\underline{g(x, \hat{y})}$ evaluates the loss h suffers given input x and ground truth \hat{y} .
- Denote G as the collection of all such functions g associated to some h ∈ H.

Loss functions associated to hypothesis set

Example: The hypothesis set of all linear binary classifiers on \mathbb{R}^d can be written as

$$H = \left\{ h_{\boldsymbol{w}, b} \colon \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R} \right\},\$$

where each $h_{w,b}$ is a binary linear classifier $h_{w,b}(x) = sign(w^T x + b)$

Suppose we adopt the 0-1 loss function $L(y, \hat{y}) = 1\{y \neq \hat{y}\}$

We can associate each hypothesis $h_{w,b} \in H$ with $g_{w,b}$, as given by $g_{w,b}(\mathbf{x}, \hat{y}) = L(h_{w,b}(\mathbf{x}), \hat{y}) = 1\{h_{w,b}(\mathbf{x}) \neq \hat{y}\}$

Loss functions associated to hypothesis set

· (2)

WL

þ

 W^2

••• +

 b^2

b^L)

Example: The hypothesis set pertaining to a neural network

$$H = \{h_{\theta} \colon \theta \in \Theta\},\$$

where $\theta = \{ W^l, b^l \}_{l=1}^L$ is the parameter of all weights and biases, and

$$h_{\theta}(x) = \sigma(W^{L} \cdots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b)$$

Suppose we consider the cross entropy loss

$$L(y, \hat{y}) = -\sum_{k=1}^{K} \hat{y}^{(k)} \log y^{(k)}$$

We can associate each hypothesis $h_{\theta} \in H$ with g_{θ} , as given by

$$g_{\theta}(\boldsymbol{x}, \hat{\boldsymbol{y}}) = L(h_{\theta}(\boldsymbol{x}), \hat{\boldsymbol{y}}) = -\sum_{k=1}^{K} \hat{\boldsymbol{y}}^{(k)} \log h_{\theta}^{(k)}(\boldsymbol{x})$$

Set of Loss Functions and Empirical Loss Minimization

- G can be interpreted as the family of loss functions associated to H.
- To minimize the empirical loss evaluated over training data $\{(x_i, \hat{y}_i)\}_{i=1}^m$ is equivalent to $\inf_{h \in H} \sum_{i=1}^m L(h(x_i), \hat{y}_i) = \inf_{g \in G} \sum_{i=1}^m g(x_i, \hat{y}_i) = \inf_{g \in G} \sum_{i=1}^m g(z_i)$

$$H$$

 h_1
 h_2
 h_3
 g_1
 g_3
 g_2
 g_2

 $g_{\theta}(\mathbf{x}, \hat{\mathbf{y}}) = L(h_{\theta}(\mathbf{x}), \hat{\mathbf{y}})$

• If G is "big", it is more likely to achieve small empirical loss, but also more likely to overfit.

- How to measure the "size" of G?
- How does the "size" of G relates to "overfitting"? Generalization bound

Rademacher complexity

Rademacher Complexity

Let G be a family of functions mapping from Z to [a, b] and S = (z₁, ..., z_m) a fixed sample of size m with elements in Z. Then the empirical Rademacher complexity of G with respect to the sample S is defined as

$$\widehat{\Re}_{S}(G) = \mathbb{E}_{\sigma} \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \right]$$

where $\boldsymbol{\sigma} = (\sigma_1, ..., \sigma_m)$, with σ_i s being independent uniform random variables taking values in $\{-1, +1\}$. The random variables σ_i are called **Rademacher variables**.

• Let D denote the distribution according to which samples are drawn. For any $m \in \mathbb{N}$, the **Rademacher complexity** of G is the expectation of the empirical Rademacher complexity over all samples of size m drawn according to D:

$$\mathfrak{R}_m(G) = \mathbb{E}_{S \sim D^m} \big[\widehat{\mathfrak{R}}_S(G) \big]$$

Geometric Interpretation

$$\widehat{\Re}_{S}(G) = \mathbb{E}_{\sigma} \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \right]$$

Suppose we have two samples $S = \{z_1, z_2\}$, then

Binary Classifier Generalization Bound

• Let \mathcal{X} be input space, $\mathcal{Y} = \{-1, +1\}$ be output space, H be a hypothesis set. If 0-1 loss is concerned, then $\mathbb{P} \begin{bmatrix} \text{True loss Training loss complexity} \\ \sup_{h \in H} (\mathcal{R}(h) - \hat{\mathcal{R}}_{S}(h)) \leq \Re_{m}(H) + \sqrt{\frac{\log(1/\delta)}{2m}} \\ \sup_{h \in H} \geq 1 - \delta \end{bmatrix} \geq 1 - \delta$ Confidence

where
$$\Re_m(H) = \mathbb{E}_{S \sim D^m}[\widehat{\Re}_S(H)]$$
, for which *D* is the underlying distribution on \mathcal{X} , and

$$\widehat{\Re}_{S}(H) = \mathbb{E}_{\sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(x_{i}) \right]$$

for $S = (x_{1}, \dots, x_{m})$

Loss
0-1 loss
margin
$$\hat{y}h(x)$$

(Mohri 2012, Theorem 3.2)

 Roughly speaking, Rademacher complexity bounds the gap between training error and true error.

Multi-class Classifier Generalization Bound

• Let \mathcal{X} be input space, $\mathcal{Y} = \{1, ..., k\}$ be output space, *H* be a hypothesis set. If hinge loss is concerned, then

$$\mathbb{P}\left[\sup_{h\in H}^{\text{True loss Training loss}} \left(\frac{2k^2}{\rho} \Re_m(\psi(H)) + \sqrt{\frac{\log(1/\delta)}{2m}}\right] \geq 1 - \delta$$
Confidence

where $\psi(H) = \{x \mapsto h(x, y) : h \in H, y \in \mathcal{Y}\}.$

• More elaborately, $\Re_m(\psi(H)) = \mathbb{E}_{S \sim D^m}[\hat{\mathcal{R}}_S(\psi(H))]$, for which *D* is the underlying distribution on \mathcal{X} , and

$$\widehat{\Re}_{S}(\psi(H)) = \mathbb{E}_{\sigma}\left[\sup_{h \in H, y \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}h(x_{i}, y)\right]$$

$$\underset{h(x, \hat{y}) - \max_{y \neq \hat{y}} h(x, y)}{\underset{h(x, y) \neq \hat{y}}{\underset{h(x, y) \neq \hat{y}}}}}}}}}}$$

(Mohri 2012, Theorem 8.1)

hinge loss (slope $-1/\rho$)

Loss

0-1 loss

Rademacher complexity for Neural Network

Theorem 7.12. Given domain \mathcal{X} in Euclidean space \mathbb{R}^n , let H_d be the collection of standard neural network (scalar) functions of the form

 $\mathbf{x} \mapsto \mathbf{W}_d \psi_{d-1} (\mathbf{W}_{d-1} \psi_{d-1} (\cdots (\psi_1(\mathbf{W}_1 \mathbf{x}))))$

where \mathbf{W}_d is a row vector, each \mathbf{W}_k is a matrix satisfying $\|\mathbf{W}_k^T\|_{p,q} \leq M_{p,q,k}$, and each ψ_k is an element-wise 1-Lipschitz positive-homogeneous function. Here p and q are exponential conjugates, $1 \leq p \leq \infty$. Let $S_{\mathcal{X}} = (\mathbf{x}_1, ..., \mathbf{x}_m) \in \mathcal{X}^m$ be a sample of size m, and denote $M_{p,q} = \prod_{k=1}^d M_{p,q,k}$, $B = \max_{1 \leq i \leq m} \|\mathbf{x}_i\|_2$.

(a) Let g be a convex strictly increasing function, then

$$\hat{\mathcal{R}}_{S_{\mathcal{X}}}(H_d) \leq \frac{1}{m} g^{-1} \left(2^{d-1} \mathbb{E}_{\sigma} \left[g \left(M_{p,q} \left\| \sum_{i=1}^m \sigma_i \mathbf{x}_i \right\|_q \right) \right] \right)$$

where $\sigma = (\sigma_1, ..., \sigma_m)$ are Rademacher variables.

$$\begin{aligned} &(b) \ If \ p = q = 2, \ then \\ &\hat{\mathcal{R}}_{S_{\mathcal{X}}}(H_d) \leq \frac{1}{m} M_{2,2}(\sqrt{2(d-1)\log 2} + 1) \sqrt{\sum_{i=1}^m \|\mathbf{x}_i\|_2^2} \leq \frac{BM_{2,2}(\sqrt{2(d-1)\log 2} + 1)}{\sqrt{m}} \\ &(c) \ If \ p = 1, \ q = \infty, \ then \\ &\hat{\mathcal{R}}_{S_{\mathcal{X}}}(H_d) \leq \frac{1}{m} M_{1,\infty} \sqrt{2(d\log 2 + \log n) \max_j \sum_{i=1}^m x_{i,j}^2} \leq \frac{BM_{1,\infty}\sqrt{2(d\log 2 + \log n)}}{\sqrt{m}} \end{aligned}$$

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. "Size-independent sample complexity of neural networks," *Proceedings of the 31st Conference On Learning Theory, PMLR* 75:297-299, 2018.

Growth Function and VC Dimension

Growth Function

• Let H be a family of binary functions mapping from \mathcal{X} to $\{-1, +1\}$.

The **growth function**
$$\Pi_H : \mathbb{N} \to \mathbb{N}$$
 is defined by
 $\Pi_H(m) = \max_{x_1, \dots, x_m \in \mathcal{X}} |\{(h(x_1), \dots, h(x_m)): h \in H\}|$

A sample
$$S = (x_1, ..., x_m) \in \mathcal{X}^m$$
 is said to be **shattered** by H if $|\{(h(x_1), ..., h(x_m)): h \in H\}| = 2^m$

➤The Vapnik-Chervonenkis (VC) dimension of H is the size of the largest set that can be shattered by H, namely

 $VCdim(H) = \sup\{m: \Pi_H(m) = 2^m\}$

VC Dimension for Binary Classifiers with Hyperplane Decision Boundary

Let *H* be the family of binary linear classifiers on \mathbb{R}^2

There exists a $S = (x_1, x_2, x_3)$ of size 3 shattered by H $\Rightarrow VCdim(H) \ge 3$ $x_1 \bullet$ $x_2 \bullet$ Each sample $S = (x_1, x_2, x_3, x_4)$ of size 4 cannot be shattered by H $\Rightarrow VCdim(H) < 4$ $x_1 \bullet$ $x_2 \bullet$ $x_2 \bullet$ x_3 $x_2 \bullet$ $x_2 \bullet$ x_3 \rightarrow *VCdim*(*H*) = 3

Theorem:

Let *H* be the family of binary classifiers on \mathbb{R}^d with hyperplane decision boundary, then VCdim(H) = d + 1.

(Mohri 2012*,* Theorem 3.4)

Relation between Rademacher complexity, growth function, and VC dimension

- Let H be a family of binary functions mapping from \mathcal{X} to $\{-1, +1\}$. Then $\Re_m(H) \leq \sqrt{\frac{2 \log \Pi_H(m)}{m}}$ (Mohri 2012, Corollary 3.1)
- If *H* has VC dimension *d*, then

$$\Pi_{H}(m) \leq \left(\frac{em}{d}\right)^{d}$$
(Mohri 2012, Corollary 3.3)

Hence with probability at least
$$1 - \delta$$
,

$$\sup_{h \in H} (\mathcal{R}(h) - \hat{\mathcal{R}}_{S}(h)) \leq \Re_{m}(H) + \sqrt{\frac{\log(1/\delta)}{2m}}$$

$$\leq \sqrt{\frac{2\log \Pi_{H}(m)}{m}} + \sqrt{\frac{\log(1/\delta)}{2m}}$$

$$\leq \sqrt{\frac{2d\log \frac{em}{d}}{m}} + \sqrt{\frac{\log(1/\delta)}{2m}}$$

Wish to know more?

Foundations of Machine Learning

M. Mohri, A. Rostamizadeh, and A. Talwalkar MIT Press

> Foundations of Machine Learning

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar

Probability in High Dimension

Ramon van Handel Princeton University (APC 550 Lecture Notes) https://web.math.princeton.edu/~rvan/APC550.pdf