Adversarial Attack Hung-yi Lee

Motivation

- You have trained many neural networks.
- We seek to deploy neural networks in the real world.
- Are networks robust to the inputs that are built to fool them?
 - Useful for spam classification, malware detection, network intrusion detection, etc.

How to Attack

https://www.darksword-armory.com/wp-content/uploads/2014/09/two-handed-danish-swordmedieval-weapon-1352-3.jpg

Example of Attack

Network

= ResNet-50

The target is "Star Fish"

Benign Image

Attacked Image

Example of Attack

Network

= ResNet-50

The target is "Keyboard"

Attacked Image

tabby cat

tiger

cat

$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{bmatrix} - \begin{bmatrix} x_1^0 \\ x_2^0 \\ x_3^0 \\ \vdots \end{bmatrix} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \vdots \end{bmatrix}$ Non-perceivable Need to consider $d(x^0, x) \leq \varepsilon$ x^0 Δx X human perception small L-∞ L2-norm Change $d(\mathbf{x^0}, \mathbf{x}) = \|\Delta \mathbf{x}\|_2$ every pixel a $= (\Delta x_1)^2 + (\Delta x_2)^2 + (\Delta x_3)^2 \cdots$ little bit same L2 L-infinity $d(\mathbf{x^0}, \mathbf{x}) = \|\Delta \mathbf{x}\|_{\infty}$ Change one pixel much $= max\{|\Delta x_1|, |\Delta x_2|, |\Delta x_3|, ...\}$ large L- ∞

$$w^*, b^* = \arg \min_{w,b} L$$
 Difference?

Update *input*, not *parameters*

$$\mathbf{x}^* = arg \min L(\mathbf{x})$$

Gradient Descent

Start from original image x^0 For t = 1 to T $x^t \leftarrow x^{t-1} - \eta g$

$$\boldsymbol{g} = \begin{bmatrix} \frac{\partial L}{\partial x_1} |_{\boldsymbol{x} = \boldsymbol{x}^{t-1}} \\ \frac{\partial L}{\partial x_2} |_{\boldsymbol{x} = \boldsymbol{x}^{t-1}} \\ \vdots \end{bmatrix}$$

Attack Approach

$$\mathbf{x}^* = \arg \min_{\substack{d(\mathbf{x}^0, \mathbf{x}) \leq \varepsilon}} L(\mathbf{x})$$

Fast Gradient Sign Method (FGSM)

https://arxiv.org/abs/1412.6572

Start from original image x^0 For t = 1 to T $x^t \leftarrow x^{t-1} - \eta g$

if t > 0, sign(t) = 1; otherwise, sign(t) = -1

after update L-infinity Attack Approach fixed **x**⁰ ε ε

$$\mathbf{x}^* = \arg\min_{\substack{d(\mathbf{x}^0, \mathbf{x}) \leq \varepsilon}} L(\mathbf{x})$$

Iterative FGSM

https://arxiv.org/abs/1607.02533

Start from original image x^0 For t = 1 + T $x^t \leftarrow x^{t-1} - \eta g$ If $d(x^0, x) > \varepsilon$ $x^t \leftarrow fix(x^t)$

$$\underbrace{\begin{array}{l} \pm 1 \\ g = \\ \pm 1 \\ sign\left(\frac{\partial L}{\partial x_1}|_{x=x^{t-1}}\right) \\ sign\left(\frac{\partial L}{\partial x_2}|_{x=x^{t-1}}\right) \\ \vdots \end{array} }$$

White Box v.s. Black Box

- In the previous attack, we know the network parameters θ
 - This is called White Box Attack.
- You cannot obtain model parameters in most online API.
- Are we safe if we do not release model? ③
- No, because **Black Box Attack** is possible. 😕

$$= \begin{bmatrix} sign\left(\frac{\partial L}{\partial x_1}|_{x=x^{t-1}}\right) \\ sign\left(\frac{\partial L}{\partial x_2}|_{x=x^{t-1}}\right) \end{bmatrix}$$

g

Black Box Attack

If you have the training data of the target network Train a proxy network yourself Using the proxy network to generate attacked objects

What if we do not know the training data?

Black Box Attack

		ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
Proxy	ResNet-152	0%	13%	18%	19%	11%
	ResNet-101	19%	0%	21%	21%	12%
	ResNet-50	23%	20%	0%	21%	18%
	VGG-16	22%	17%	17%	0%	5%
	GoogLeNet	39%	38%	34%	19%	0%

Be Attacked

(lower accuracy \rightarrow more successful attack)

Ensemble Attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	0%	0%	0%	0%	0%
-ResNet-101	0%	1%	0%	0%	0%
-ResNet-50	0%	0%	2%	0%	0%
-VGG-16	0%	0%	0%	6%	0%
-GoogLeNet	0%	0%	0%	0%	5%

The attack is so easy! Why?

https://arxiv.org/pdf/1611.02770.pdf

To learn more:

Adversarial Examples Are Not Bugs, They Are Features

https://arxiv.org/abs/1905.02175

One pixel attack

Source of image: https://arxiv.org/abs/1710.08864

Cup(16.48%) Soup Bowl(16.74%)

Bassinet(16.59%)
Paper Towel(16.21%)

Hamster(35.79%) Nipple(42.36%)

joystick

Video: https://youtu.be/tfpKIZIWidA

Teapot(24.99%) Joystick(37.39%)

Universal Adversarial Attack

https://arxiv.org/abs/1610.08401

Black Box Attack is also possible!

Beyond Images

Speech processing

Detect synthesized speech

感謝吳海濱同學提供實驗結果

Natural language processing

Question: Why did he walk? For <u>exercise</u>, Tesla walked between 8 to 10 miles per day. He squished his toes one hundred times for each foot every night, saying that it stimulated his brain cells.

Question: Why did the university see a drop in applicants? In the early 1950s, student applications declined as a result of increasing crime and poverty in the Hyde Park neighborhood. In response, the university became a

exercise

https://arxiv.org/abs/1908.07125

crime and poverty

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

Attack in the Physical World

- An attacker would need to find perturbations that generalize beyond a single image.
- Extreme differences between adjacent pixels in the perturbation are unlikely to be accurately captured by cameras.
- It is desirable to craft perturbations that are comprised mostly of colors reproducible by the printer.

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP	STOP
5′ 15°	STOP		STOP Inter	STOP	STOP
10′0° https://arxiv.org/ab	STOP		Stop	STOP	STOP
s/1707.08945 10′ 30°				STOP	STOP
40′ 0°					
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Attack in the Physical World

read as an 85-mph sign

https://youtu.be/4uGV_fRj0UA

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Adversarial Reprogramming

https://arxiv.org/abs/1806.11146

"Backdoor" in Model

https://arxiv.org/abs/1804.00792

• Attack happens at the training phase

be careful of unknown dataset

Defense Passive v.s. Proactive

Passive Defense

25 ·

200 -

Smoothing

Passive Defense

Image Compression

Generator

https://arxiv.org/abs/1805.06605

8.9M

68.34K

https://arxiv.org/abs/1704.01155 https://arxiv.org/abs/1802.06816

Passive Defense - Randomization

https://arxiv.org/abs/1711.01991

Proactive Defense

Adversarial Training

Training a model that is robust to adversarial attack.

Adversarial Training for Free!

https://arxiv.org/abs/1904.12843

Given training set
$$\mathcal{X} = \{ (x^1, \hat{y}^1), (x^2, \hat{y}^2), \cdots, (x^N, \hat{y}^y) \}$$

Using ${\mathcal X}$ to train your model

 \rightarrow For n = 1 to N

Can it deal with new algorithm?

Find adversarial input \tilde{x}^n given x^n by an attack algorithm Find the problem

We have new training data

$$\mathcal{X}' = \left\{ \left(\widetilde{\mathbf{x}}^{1}, \widehat{y}^{1} \right), \left(\widetilde{\mathbf{x}}^{2}, \widehat{y}^{2} \right), \cdots, \left(\widetilde{\mathbf{x}}^{N}, \widehat{y}^{y} \right) \right\}$$

Using both \mathcal{X} and \mathcal{X}' to update your model Fix it!

Data Augmentation

Concluding Remarks

- Attack: given the network parameters, attack is very easy.
- Even black box attack is possible
- Defense: Passive & Proactive
- Attack / Defense are still evolving.

Acknowledgement

Attack Approaches

- FGSM (https://arxiv.org/abs/1412.6572)
- Basic iterative method (<u>https://arxiv.org/abs/1607.02533</u>)
- L-BFGS (https://arxiv.org/abs/1312.6199)
- Deepfool (<u>https://arxiv.org/abs/1511.04599</u>)
- JSMA (<u>https://arxiv.org/abs/1511.07528</u>)
- C&W (https://arxiv.org/abs/1608.04644)
- Elastic net attack (<u>https://arxiv.org/abs/1709.04114</u>)
- Spatially Transformed (<u>https://arxiv.org/abs/1801.02612</u>)
- One Pixel Attack (<u>https://arxiv.org/abs/1710.08864</u>)
- only list a few

What happened?

