ntroduction of Deep
Reinforcement Learning (RL)

Hung-yi Lee




Supervised Learning = RL

g Human label
TE — ? <-» C(Cat

5

i g Human label
sz : # i
: : — ? <= “3.377

] 5

K X

b 2

g L

i X

7, |CMEg )

s i > Cl

S : 4

& .

nnnnnnnnnnnnnnnnnnn

It is challenging to label data in some tasks.

...... machine can know the results are good or not.
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Policy Gradient
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Reward Shaping

No Reward: Learning from Demonstration



Machine Learning
~ Looking for a Function

Actor b
Observation e Action
> ction =
i Function
Function fi( Observatlon ) Hhet
input . . F ‘f output
x” w|

Find a policy maximizing

| rewar
total reward Reward

Environment



Example: Playing Video Game

Termination: all the aliens are killed,
or your spaceship is destroyed.

e Space invader

Score
(reward)

Kill the
aliens

shield




Example: Playing Video Game

Actor
Observation ( Q Action
> :
“right”
A
g
Reward

<

Environment



Example: Playing Video Game

Find an actor maximizing expected reward.

r ‘
Observation acio { Q Action

“fire”

Reward

if killing an alien.

<

Environment
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Example: Learning to play Go
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Example: Learning to play Go

Find an actor maximizing expected reward.

Observation> Action
I GGGGGGGGGGGGGGG
<0: AlphaGo
- Reward
reward = 0 in most cases
If win, reward =1
ABcocro A K Lm ™ | X If loss, reward=-1 & [

Environment



Step 2: define
unction wi 4 loss from
unknown training data




Step 1: Function with Unknown

Policy Network
(Actor) Sample based
Lol et 07\ on scores
* » » T right 0.2 \ Scores of
: actions
+—-» fire 0.1
pixels y

Classification Task!!!

* Input of neural network: the observation of machine
represented as a vector or a matrix

e Output neural network : each action corresponds to a
neuron in output layer



Step 2: Define “Loss”

Start with
observation s Observation s, Observation s3

\ - Obtain reward \ / Obtain reward

T1=0 7"2=5




Step 2: Define “Loss”

Start with
observation s Observation s, Observation s3

This is an episode.
Game Over
(spaceship destroyed)

Obtain reward 7

After many turns

IIIIIIIIIIIIIIIII>

Total reward
T

(return):
R — z Tt

H t=1
What we want
to maximize




Trajectory

Step 3: Optimization _y, a.s,.a, )

Network Network

S1 aq S2 a
E /" E /"
\ v v
S1 a; S2 a; S3
\ \
SAWEIGE sample  REWTEISe _, Theyare
black box ...
rl TZ
| |

... With randomness

.

How to do the optimization here is R(t)= ) 7, '

the main challenge in RL.

c.f. GAN t=1



O Ut‘ | ne To learn more about policy gradient:
https://youtu.be/W8XF3ME8G2I

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration



How to control your actor

* Make it take (or don’t take) a specific action a given

specific observation s.
a

—> left <=

-—>[ Actor 9}—» —> right =-»
S

—> fire <=-p»
e
Cross-entropy

o O P D

Take action a
L=e
Don’t take action @ 0" =arg mein L
L=—e



How to control your actor

Take action @ given s a e1
—> left <-p

-—>[ Actor 9]—» — right <=-»
S

—» fire <@-p

Don't take action d’ given s’ a
— €2
—>  left <=p
-—>[ Actor 9}—» —> right =-»
s’ —> fire <-»

L=e;—e, H*=argmeinL

© O P

O — O



How to control your actor

Training Data

{s1,a1} +1 ES S—»[ Actor a
{5282} -1 HJ
{ss,ds} +1

L=+4+e —e,+ez:-—ep

0* = arg meinL

{sn,an} -1 m




How to control your actor

Training Data

0" = arg meinL



Version O

Training Data

Reward

'

)

many episodes

Short-sighted Version!




S1 a; AY)
Version O m ¢ m
v v
S1 a1 S2 a

* An action affects the subsequent observations and thus
subsequent rewards.

* Reward delay: Actor has to sacrifice immediate reward to
gain more long-term reward.

* In space invader, only “fire” yields positive reward, so vision
O will learn an actor that always “fire”.

)



Version 1

S1 S5 S3 SN
as | ooee ay
[ 1 ) r3 Iy }

cumulated reward

Training Data

{51, a4} Ay =G
{52: aZ} A2 — GZ
{s3,a3} Az =G

{sn,an} Ay= Gy

Gt=zrn

n=t



Version 2

S1 S2 S3 SN
Az | oo ay
[ 7 ) 3 Ty }

Also the credit of aq ?
G1=T‘1-|-7‘2-|-7‘3+ ......

Gl =1 +yr, +y?r3 + ...

Discount factor ¥ < 1

Training Data

{51, a4} A = G{
{SZIaZ} Az — Gé
{s3,a3} Az =Gy

{sn,an} Ay= GIIV



Version 3

Good or bad reward is “relative”
If all ther;, = 10

1, = 10 is negative ...
Minus by a baseline b

Make G; have positive and negative values

Training Data

{s,a:} A =Gi—b
{s2,a,} A, =G) —b
{s3,a3} A3 =G5 —b

{SN, aN} AN: G],V —b



Policy Gradient

* |nitialize actor network parameters 8°

* For training iterationi = 1to T
* Using actor 6~ 1 to interact
* Obtain data {s{,a.},{s,,a,}, ..., {sy, ay}

* Compute 44, A4,, ..., Ay
 Compute loss L

; - Data collection is in the “for
* 0" < 07" —nVL loop” of training iterations.



Policy Gradient

Training Data

{Sl) al} Al
{SZJ aZ} Az
{s3,a3} Aj

syvan} Ay only update once

Each time you update the model parameters, you need to
collect the whole training set again.



Policy Gradient

e Initialize actor network parameters 6°

* For training iterationi = 1to T
e Using actor|g*~1
* Obtain data {sy, a,},{s,, a5}, ..., {sy, an}
* Compute A4,4,, ..., Ay
 Compute loss L

{01}~ pi-1}-nvL

May not be good for 6°

One man's meat is another man's poison.
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Policy Gradient

* |nitialize actor network parameters 8°

* For training iterationi = 1to T
* Using actor 6~ 1 to interact
* Obtain data {s{,a.},{s,,a,}, ..., {sy, ay}
* Compute A4, 4,, ..., Ay
* Compute loss L
* 0"« 01"t — VL

May not obsAerve by '

Trajectory of
0 i—1




On-policy v.s. Off-policy

* The actor to train and the actor for interacting is
the same. = On-policy

* Can the actor to train and the actor for interacting
be different? — Off-policy

Trajectory of
0 i—1

In this way, we do not have to collection data after each update.



Off-policy = Proximal Policy
Optimization (PPO)

* The actor to train has to

know its difference from RSB — AL
. ot o =
the actor to interact. e

AR 2 R BGB
video: — - - RR,
https://youtu.be/OAKAZhFmYol

4 N
Not apply to

everyone

.

the actor to train ,. |
https://disp.cc/b/115-bLHe the actor to interact



Collection Training Data:
Exploration
Enlarge output

ofeiafem =

entropy
pa rameters
Reward REWEIGCE ......
' '

Suppose your actor

r T always takes “left”.

The actor needs to have randomness during We never know
data collection. what would happen

A major reason why we sample actions. © if taking "fire”.



D e e p I\/I | n d - P P O https://youtu.be/gn4nRCCOTWQ

It might
look goofy ...




OpenAl - PPO g




Outline
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Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration



Critic Gl =1 +yr, +y?r3 + ...

e Critic: Given actor 8, how good it is when observing s (and
taking action a)

* Value function I/Eks): When using actor 6, the discounted
cumulated reward expects to be obtained after seeing s

Ve(s)
S » V
scalar

VO (s) is large V9(s) is smaller

The output values of a critic depend on the actor evaluated.



How to estimate V7 (s)

* Monte-Carlo (MC) based approach

The critic watches actor 6 to interact with the environment.

After seeing s,,

Until the end of the episode,

Sa=> Ve — V9 (sy) «> G
the cumulated reward is G,

After seeing s,

Until the end of the episode,

9 6 !
] S, —> —> /Y (s5,.) «=> G
the cumulated reward is G, b V (sp) b




How to estimate V™ (s)

* Temporal-difference (TD) approach

oS¢, Ay, T, Spyq * . (ignore the expecztation here)
Vo(se) =1 + Y11 + Va2 -

V9(5t+1) =Tt41 T VT4 + o

VO(sp) =yVO(ses1) + 12

se— V9 — VO (se)

— VG(St) — VV6(5t+1)‘—’ Tt
Xy

St+1 " 744 — V9(st41)




MCv.s. TD

[Sutton, v2,
Example 6.4]

* The critic has observed the following 8 episodes
* s, 7T =0,s,,7 =0, END

* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =0,END

(Assume y =1, and the
actions are ignored here.)

VO(s,) = 3/4
Vvo(s,) =? 0? 3/4?

Monte-Carlo: 19(s,) = 0
Temporal-difference:

Vo(s,) =V9(sy) + 7
3/4 3/4 0



Version 3.5

Training Data

{sp,ai} Ay =G{ —b
{s2,a2} A, =Gy —b
{ss,a3} As; =G5 —b

{svan} Ay= Gy —b




Version 3.5

Training Data

{suLa;} A =G4 —V9(51)
{s,,a,} A, = Gé —VH(SZ)
{s3,a3} Az =G5 —V9(s,)

{symant Ay= Gy —V9(sy)




Version 3.5 {se.act A, =Gl —v9(s,)

G =100
AN

® ~G =1 = V(s
St G =2

G =-—10
(not necessary take a;) —_
(You sample the actions based on
a distribution) At > ()

a; is better than average.
at

‘—> ............................... > Gé At < O
S¢ /

a, is worse than average.
Just a sample t &



1+ VO(se41) = VO(s)

Version 4 (ot A, =6—pisy
Advantage Actor-Critic —
G =100
@ 6 =1 — V7(s)
St o
G =-10
(not necessary take a;) —
G =101
Obtain r; G =
/ Tt
~ G = S—
o +V9(St+1)
St G —
G=-5




Tip of Actor-Critic

* The parameters of actor and critic can be

sha

i

red.

—> Network

Network

/
\

—>  eft
— right

—> fire

-~

> Actor

-’

Network — scalar ====% Critic



Outlook: Deep Q Network (DQN)

Video:
https://youtu.be/o_g9JUMw10c
https://youtu.be/2-zGCx4iv_k

https://arxiv.org/abs/1710.02298

Median human-normalized score

200%

100%

DQON

DDQON

Prioritized DDQN
Dueling DDQN
A3C

Distributional DQN A,

Noisy DQN
Rainbow

|
100
Millions of frames
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Sparse Reward Ae =7 + VO (s01) = VO (sp)

Training Data

{Sl;al} Al
{52) aZ} A2

{s3,a3} As

{SN) aN} AN

We don’t know actions
are good or bad.

If » = 0 in most cases =y

e.g., robot arm to bolt on the screws

The developers define extra ' ,
rewards to guide agents. reward shaping



Reward Shaping

VizDoom https://openreview.net/forum?id=Hk3mPK5gg&noteld=Hk3mPK5gg

Visual Doom Al Competition @ CIG 2016
https://www.youtube.com/watch?v=94EPSjQH38Y



Reward Shaping

VizDoom https://openreview.net/forum?id=Hk3mPK5gg&noteld=Hk3mPK5gg

Parameters Description FlatMap | CIGTrackl
living Penalize agent who just lives -0.008 / action
health_loss Penalize health decrement -0.05 / unit
ammo_loss Penalize ammunition decrement -0.04 / unit
health_pickup Reward for medkit pickup 0.04 / unit
ammo_pickup Reward for ammunition pickup 0.15 / unit
dist_penalty Penalize the agent when it stays -0.03 / action

dist_reward

Reward the agent when it moves

9e-5 / unit distance

X

https://bair.berkeley.edu/blog/2017/12/20/reverse-curriculum/



w https://arxiv.org/abs/1705.05363

Obtaining extra reward when the agent sees something
new (but meaningful).

Curiosity Driven Exploration
by Self-Supervised

Prediction

ICML 2017

Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell
UC Berkeley

Source of video: https://pathak22.github.io/noreward-rl/
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Motivation

e Even define reward can be challenging in some tasks.

Hand-crafted rewards can lead to uncontrolled behavior.

Three Laws of Robotics:

1. A robot may not injure a human being or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.
3. A robot must protect its own existence as long as such
protection does not conflict with the First or Second Laws.

WILL SMITH &

; 23
st
N e ’
= _
X v
: 7 4
5

restraining individual human behavior and sacrificing
some humans will ensure humanity's survival



Imitation Learning

S1 aq So a-,
o JIY - I

\ \ v
51 aq S2 a 53

Actor can interact with the environment, but reward
function is not available

We have demonstration of the expert.  se|f driving: record

- human drivers
L . Each 7 is a trajectory Robot: erab th
(t, T2, Tk) of the export. ObOtL. grab the

e arm of robot



Isn’t it Supervised Learning?

Yes, also known as
* Self-driving cars as example Behavior Cloning

T= {511 (Eill S2, az» }

0.‘
forward

Problem: The experts only
sample limited observation.



The agent will copy
I\/l()r‘e prob|em every behavior, even

irrelevant actions.

BANDICUT

Easy Video Cutter & Joiner

www.bandicam.com/bandicut

https://www.youtube.com/watch?v=j2FSB3bseek




Inverse Reinforcement Learning

demonstration

of the expert

Environment e

' {Tl'TZI 7? }
Reward '
- # Relnforce.ment #
Function Learning

L Using the reward function to find the
optimal actor.




Inverse Reinforcement Learning

* Principle: The teacher is always the best.

e Basic idea:
e |nitialize an actor
* |n each iteration

e The actor interacts with the to obtain
some trajectories.

e Define a reward function, which makes the
trajectories of the teacher better than the actor.

* The actor learns to maximize the reward based on
the new reward function.

e Output the reward function and the actor learned from
the reward function



Framework of IRL

K K
z R(%,) > z R(T)
n=1 n=1

K/
» (21,85, T} — Obtain
— I—> Reward Function R

Reward
Actor {14,T2,"", Tk} Function R

v

Find an actor based
4 0N reward function R

= Generator

Reward function

= Discriminator , _
By Reinforcement learning



High score for real,
low score for generated

\/
D

\/

Find a G whose output
obtains large score from D

IRL
Larger reward for 7,
Expert Lower rewa rd for T
Re ard
{t1, Tz» Tk ) W
Functlon

Find a Actor obtains

—
Actor large reward




Robot

* How to teach robots? https://www.youtube.com/watch?v=DEGbtjTOIBO




Chelsea Finn, Sergey Levine, Pieter Abbeel,
Guided Cost Learning: Deep Inverse Optimal
Control via Policy Optimization, ICML, 2016

http://rll.berkeley.edu/gcl/

Guided Cost Learning:
Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn, Sergey Levine, Pieter Abbeel
UC Berkeley




To Learn More ...

Visual Reinforcement Learning with Imagined Goals, NIPS 2018
https://arxiv.org/abs/1807.04742

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning,
ICML 2020 https://arxiv.org/abs/1903.03698

. self-generated goal user-specified goal
S ¢ Train . - Test .
train VAE

v

initial final
-

29 ~N(0,1)

Zq
v

3 il v " ol . |
Qulz,a,z,)
Ty 'L:-' Zg |
train w, &

{si}

Reinforcement learning with Imagined Goals (RIG)



Concluding Remarks

What is RL? (Three steps in ML)

Policy Gradient
Actor-Critic

Sparse Reward

No Reward: Learning from Demonstration



