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Network as Generator 

Network

𝑧

𝑦Simple 
Distribution

→ Generator Complex 
Distribution

𝑥
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We know its formulation, 
so we can sample from it.



Why distribution? 

Video Prediction 

Network

Source: https://github.com/dyelax/Adversarial_Video_Generation

Real Video

𝑦

Previous 
frames

next 
frame
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Why distribution? 

Source: https://github.com/dyelax/Adversarial_Video_Generation

Prediction

turn 
right

???

Video Prediction 

Network 𝑦

Previous 
frames

turn 
left

4



Why distribution? 

Source: https://github.com/dyelax/Adversarial_Video_Generation

Prediction

Video Prediction 

Network

Previous 
frames

Simple 
Distribution

𝑧
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Why distribution? 

• Especially for the tasks needs “creativity” 

Network
Character 

with red eyes

Drawing 

Chatbot 

Network你知道輝夜是
誰嗎?

她是秀知院學生會…

她開創了忍者時代…
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(The same input has different outputs.)



Generative Adversarial 
Network (GAN)
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GAN

• How to pronounce “GAN”?

Google 小姐
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All Kinds of GAN … https://github.com/hindupuravinash/the-gan-zoo

GAN

ACGAN

BGAN

DCGAN

EBGAN

fGAN

GoGAN

CGAN

…
…

Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, “Variational Approaches for Auto-Encoding 
Generative Adversarial Networks”, arXiv, 2017
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Anime Face Generation

• Unconditional generation 

Generator

𝑧

𝑦

Normal 
Distribution

Complex 
Distribution

𝑥

0.1
−0.1
⋮
0.7

−0.3
0.1
⋮
0.9

0.3
−0.1
⋮

−0.7
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Low-dim
vector

high-dim
vector



Discri-
minator

image

Discriminator It is a neural network 
(that is, a function).

Discri-
minator

Discri-
minator

Discri-
minator1.0 1.0

0.1 Discri-
minator

0.1

Scalar: Larger means real, 
smaller value fake.
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Basic Idea of GAN

Brown veins

Butterflies are 
not brown

Butterflies do 
not have veins

……..

Generator

Discriminator



Basic Idea of GAN

NN
Generator

v1

Discri-
minator

v1

Real images:

NN
Generator

v2

Discri-
minator

v2

NN
Generator

v3

Discri-
minator

v3

This is where the term
“adversarial” comes from.



Basic Idea of GAN

• 寫作敵人，唸做朋友



• Initialize generator and discriminator

• In each training iteration:

DG

sample

generated 
objects

G

Algorithm

D

Update

vecto
r

vecto
r

vecto
r

vecto
r

0000

1111

randomly 
sampled

Database

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects 
and low scores to generated objects.

Fix
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• Initialize generator and discriminator

• In each training iteration:

DG

Algorithm

Step 2: Fix discriminator D, and update generator G

Discri-
minator

NN
Generator

vector

0.13

hidden layer

update fix

large network

Generator learns to “fool” the discriminator

16



• Initialize generator and discriminator

• In each training iteration:

DG

Learning 
D

Sample some 
real objects:

Generate some 
fake objects:

G

Algorithm

D

Update

Learning 
G

G D
image

1111

image
image

image
1

update fix

0000

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

fix
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Anime Face Generation

100 updates

Source of training data: https://zhuanlan.zhihu.com/p/2476705918



Anime Face Generation

1000 updates
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Anime Face Generation

2000 updates
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Anime Face Generation

5000 updates
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Anime Face Generation

10,000 updates
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Anime Face Generation

20,000 updates
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Anime Face Generation

50,000 updates
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The faces 
generated by 
machine.

圖片生成：
吳宗翰、謝濬丞、
陳延昊、錢柏均25



In 2019, with StyleGAN ……

Source of video:
https://www.gwern.net/Faces
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Progressive GAN
https://arxiv.org/abs/1710.10196
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0.0
0.0

G

0.9
0.9

G

0.1
0.1

G

0.2
0.2

G

0.3
0.3

G

0.4
0.4

G

0.5
0.5

G

0.6
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The first GAN
https://arxiv.org/abs/1406.2661 
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(Ian J. Goodfellow)



Today …… BigGAN
https://arxiv.org/abs/1809.11096
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Theory behind GAN
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Our Objective 
Normal 

Distribution

𝑃𝐺 𝑃𝑑𝑎𝑡𝑎

as close as possible
G

How to compute the divergence?

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Divergence between distributions 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎

32

𝑤∗, 𝑏∗ = 𝑎𝑟𝑔min
𝑤,𝑏

𝐿c.f.



Sampling is good enough ……
𝐺∗ = 𝑎𝑟𝑔min

𝐺
𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Although we do not know the distributions of 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎, 
we can sample from them.

sample

G

vecto
r

vecto
r

vecto
r

vecto
r

sample from 
normal

Database

Sampling from 𝑷𝑮

Sampling from 𝑷𝒅𝒂𝒕𝒂
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Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎 : data sampled from 𝑃𝐺

train

𝑉 𝐺,𝐷 = 𝐸𝑦∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑦 + 𝐸𝑦∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑦

Objective Function for D

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺Training:

https://arxiv.org/abs/1406.2661

The value is related to JS 
divergence.

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

negative cross entropy 

Training classifier: 
minimize cross entropy 

=

class 1

class 2 Train a binary classifier 



Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

hard to discriminatesmall divergence

Discriminator
train

easy to discriminatelarge divergence

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

Training:

Small max
𝐷

𝑉 𝐷, 𝐺
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𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎max
𝐷

𝑉 𝐺,𝐷

The maximum objective value 
is related to JS divergence.

• Initialize generator and discriminator

• In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺
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Using the divergence 
you like ☺

Can we use other divergence?

https://arxiv.org/abs/1606.00709
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GAN is difficult to train ……

• There is a saying ……

(I found this joke from 陳柏文’s facebook.)38



Tips for GAN

39



JS divergence is not suitable

• In most cases, 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎 are not overlapped.

• 1. The nature of data

• 2. Sampling

Both 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺 are low-dim 
manifold in high-dim space.  

𝑃𝑑𝑎𝑡𝑎
𝑃𝐺

The overlap can be ignored.

Even though 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺
have overlap.  

If you do not have enough 
sampling ……

40



𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

What is the problem of JS divergence?

……

JS divergence is always log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier 
achieves 100% accuracy.

Equally bad

41.

The accuracy (or loss) means nothing during GAN training.



Wasserstein distance

• Considering one distribution P as a pile of earth, 
and another distribution Q as the target

• The average distance the earth mover has to move 
the earth.

𝑃 𝑄

d

𝑊 𝑃,𝑄 = 𝑑
42



Wasserstein distance

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

𝑃

𝑄

Using the “moving plan” with the smallest average distance to 
define the Wasserstein distance.

There are many possible “moving plans”. 

Smaller 
distance?

Larger 
distance?
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𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

What is the problem of JS divergence?

𝑊 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑0

𝑊 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑1

𝑊 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

𝑑0 𝑑1

……

……

Better!
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𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1 𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

What is the problem of JS divergence?

𝑑0 𝑑1

https://www.pnas.org/content/104/suppl_1/8567.figures-only



WGAN

max
𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧

𝐸𝑦~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑦 − 𝐸𝑦~𝑃𝐺 𝐷 𝑦

Evaluate Wasserstein distance between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺

How to fulfill this constraint?D has to be smooth enough.

real

−∞

generated

D

∞
Without the constraint, the 
training of D will not converge.

Keeping the D smooth forces 
D(y) become ∞ and −∞

https://arxiv.org/abs/1701.07875
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• Original WGAN → Weight

• Improved WGAN → Gradient Penalty

• Spectral Normalization → Keep gradient norm 
smaller than 1 everywhere

Force the parameters w between c and -c

After parameter update, if w > c, w = c; if w < -c, w = -c

Keep the gradient close to 1

max
𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧

𝐸𝑦~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑦 − 𝐸𝑦~𝑃𝐺 𝐷 𝑦

samples

https://arxiv.org/abs/1704.00028

https://arxiv.org/abs/1802.05957
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GAN is still challenging …

• Generator and Discriminator needs to match each 
other (棋逢敵手)

Generate fake images to fool discriminator 

Tell the difference between real and fake

Generator Discriminator

I cannot tell the 
difference ……

Fail to improve ...

Fail to improve ...
Cannot fool the 
discriminator …



More Tips 

• Tips from Soumith

• https://github.com/soumith/ganhacks

• Tips in DCGAN: Guideline for network architecture design 
for image generation 

• https://arxiv.org/abs/1511.06434

• Improved techniques for training GANs

• https://arxiv.org/abs/1606.03498

• Tips from BigGAN

• https://arxiv.org/abs/1809.11096
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GAN for Sequence Generation

max or sample

Decoder

機 器 學 習

Generator 

Discriminator

score

update

Non-differentiable … 

unchanged

∆

∆ ∆ ∆ ∆

unchanged



. 
RL is difficult to train GAN is difficult to train 

Sequence Generation GAN (RL+GAN)

Reinforcement learning (RL) is involved ……

GAN for Sequence Generation

51



GAN for Sequence Generation 

• Usually, the generator are fine-tuned from a model learned 
by other approaches. 

• However, with enough hyperparameter-tuning and tips, 
ScarchGAN can train from scratch.  

Training language 
GANs from Scratch
https://arxiv.org/abs/
1905.09922
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Generative Models 

• This lecture: Generative Adversarial Network (GAN)

Full version
https://www.youtube.com/playlist?list=PLJV_el3uVTsMq
6JEFPW35BCiOQTsoqwNw
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More Generative Models 

Variational 
Autoencoder (VAE)

FLOW-based 
Model

https://youtu.be/uXY18nzdSsMhttps://youtu.be/8zomhgKrsmQ
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Possible Solution? 

0.1
−0.1
⋮
0.7

−0.3
0.1
⋮
0.9

0.3
−0.1
⋮

−0.7

0.7
0.1
⋮

−0.9

−0.1
0.8
⋮
0.8

Network

0.3
−0.1
⋮

−0.7

Using typical learning approaches? 

Generative Latent Optimization (GLO), https://arxiv.org/abs/1707.05776

Gradient Origin Networks, https://arxiv.org/abs/2007.02798
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Conditional Generation

56



Generator

𝑧

𝑦

𝑥

57

red eyes

red eyes

black hair

yellow hair

dark circles

Text-to-image

red hair,
green eyes

blue hair,
red eyes



Conditional GAN

G
𝑧Normal distribution

𝑦 = 𝐺 𝑐, 𝑧

𝑦 is real image or not

Image

Real images:

Generated images:

1

0

Generator will learn to 
generate realistic images ….

But completely ignore the 
input conditions.

𝑥: Red eyes

D 
(original)

scalar𝑦



Conditional GAN

True text-image pairs:

𝑦 is realistic or not + 
𝑥 and 𝑦 are matched or not

(red eyes,              ) 1

0

G
𝑧Normal distribution

𝑦 = 𝐺 𝑐, 𝑧Image
𝑥: Red eyes

D 
(better)

scalar
𝑦

𝑥

(red eyes,              )

https://arxiv.org/abs/1605.05396

0(red eyes,              )



Conditional GAN

G
𝑧

𝑥

https://arxiv.org/abs/1611.07004

Image translation, or pix2pix

𝑦 = 𝐺 𝑐, 𝑧



Conditional GAN

Testing:

input supervised GAN

G
𝑧

Image D scalar

GAN + supervised

https://arxiv.org/abs/1611.07004



Conditional GAN

G𝑥: sound Image

"a dog barking sound"

Training Data 
Collection

video

https://arxiv.org/abs/1808.04108



Conditional GAN

• Sound-to-image

https://wjohn1483.github.io/
audio_to_scene/index.html

The images are generated by Chia-
Hung Wan and Shun-Po Chuang.

Louder



Conditional GAN

https://arxiv.org/abs/1905.08233

Talking Head Generation 



Conditional GAN
Multi-label Image Classifier = Conditional Generator  

Input condition

Generated output

https://arxiv.org/abs/1811.04689
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Learning from 
Unpaired Data

67



68

Deep

Network
𝒙 𝒚

𝒙𝟏

𝒙𝟑

𝒙𝟓

𝒙𝟕

𝒙𝟗

𝒚𝟐

𝒚𝟒

𝒚𝟖

𝒚𝟏𝟎

𝒚𝟔
unpaired

Learning from Unpaired Data

HW3: pseudo labeling
HW5: back translation 

Still need some
paired data



69

Deep

Network
𝒙 𝒚

unpaired

Learning from Unpaired Data

Image Style 
Transfer 

Domain 𝒳 Domain 𝒴

Can we learn the mapping without any paired data?

Unsupervised Conditional Generation 



Learning from Unpaired Data

Network

70

Domain 𝒳 Domain 𝒴



?

Cycle GAN 

𝐺𝒳→𝒴

𝐷𝒴 scalar

Input image 
belongs to 
domain 𝒴 or not

Become similar 
to domain 𝒴

Domain 𝒳

Domain 𝒴

Domain 𝒳 Domain 𝒴



?

Cycle GAN 

𝐺𝒳→𝒴

Become similar 
to domain 𝒴

Domain 𝒳

Domain 𝒴

Domain 𝒳 Domain 𝒴

ignore input

𝐷𝒴 scalar

Input image 
belongs to 
domain 𝒴 or not



Cycle GAN 

𝐺𝒳→𝒴 𝐺𝒴→𝒳

as close as possible

Lack of information 
for reconstruction 

?

𝐷𝒴 scalar

Input image 
belongs to 
domain 𝒴 or not

Domain 𝒴

Cycle consistency



Cycle GAN 

𝐺𝒳→𝒴 𝐺𝒴→𝒳

as close as possible

Cycle consistency

𝐷𝒴 scalar

Input image 
belongs to 
domain 𝒴 or not

Domain 𝒴

“Related” to input, so 
possible to reconstruct



Cycle GAN 

𝐺𝒳→𝒴 𝐺𝒴→𝒳

as close as possible

𝐷𝒴 scalar𝐷𝒳
scalar: belongs to 
domain 𝒳or not

𝐺𝒴→𝒳 𝐺𝒳→𝒴

Cycle consistency



Cycle GAN

Dual GAN

Disco GAN

https://arxiv.org/a

bs/1703.10593

https://arxiv.org/abs/1704.02510

https://arxiv.org/abs/1703.05192



https://arxiv.org/abs/1711.09020

StarGAN
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https://selfie2anime.com/
https://arxiv.org/abs/1907.10830

https://selfie2anime.com/


G

Seq2seq

Text Style Transfer

你真笨
(negative)

你真聰明
(positive)



G

Seq2seq

Positive or not?

D Discriminator

Text Style Transfer

positive

你真笨
(negative) R

Seq2seq

你真笨
(negative)

minimize the reconstruction error

Cycle GAN

你真聰明
(positive)
???????

?



Text Style Transfer

感謝張瓊之同學提供實驗結果

胃疼 , 沒睡醒 , 各種不舒服→生日快樂 , 睡醒 , 超級舒服

我都想去上班了, 真夠賤的! →我都想去睡了, 真帥的 !

暈死了, 吃燒烤、竟然遇到個變態狂
→哈哈好 ~ , 吃燒烤 ~ 竟然遇到帥狂

我肚子痛的厲害→我生日快樂厲害

• From negative sentence to positive one



Language 1 Language 2

Audio Text

Unsupervised Abstractive 
Summarization

Unsupervised ASR

Unsupervised Translation

summarydocument
https://arxiv.org/abs/1810.02851

https://arxiv.org/abs/1710.04087
https://arxiv.org/abs/1710.11041

https://arxiv.org/abs/1804.00316
https://arxiv.org/abs/1812.09323
https://arxiv.org/abs/1904.04100



Evaluation of Generation

84



Quality of Image 

• Human evaluation is expensive (and sometimes 
unfair/unstable).

• How to evaluate the quality of the generated 
images automatically? 

85

Off-the-shelf 
Image Classifier

𝑦 𝑃 𝑐|𝑦

Concentrated distribution 
means higher visual quality

e.g., Inception net, 
VGG, etc.

class 1

class 2

class 3
image



Diversity - Mode Collapse  

: real data

: generated data 

86



Diversity - Mode Dropping

87

(BEGAN on CelebA)

Generator 
at iteration t

Generator 
at iteration t+1

: real data

: generated data 



Diversity

88

CNN𝑦1

low diversity

CNN𝑦2

CNN𝑦3

…
…

class 1

class 2

class 3

class 1

class 2

class 3

class 1

class 2

class 3

𝑃 𝑐

=
1

𝑁


𝑛

𝑃 𝑐|𝑦𝑛

class 1

class 2

class 3

𝑃 𝑐|𝑦1

𝑃 𝑐|𝑦2

𝑃 𝑐|𝑦3



Diversity

89

CNN𝑦1
𝑃 𝑐|𝑦1

CNN𝑦2
𝑃 𝑐|𝑦2

CNN𝑦3 𝑃 𝑐|𝑦3

…
…

class 1

class 2

class 3

class 1

class 2
class 3

class 1
class 2

class 3

𝑃 𝑐

=
1

𝑁


𝑛

𝑃 𝑐|𝑦𝑛

Uniform means 
higher variety

Inception Score (IS): 
Good quality, large diversity → Large IS

What is the problem here? ☺



Fréchet Inception Distance (FID)

red points: real images

FID = Fréchet distance 
between the two Gaussians

https://arxiv.org/pdf/1706.08500.pdf

CNN

so
ftm

ax

blue points: generated images

???

Smaller is better



Are GANs Created Equal? A Large-Scale Study
https://arxiv.org/abs/1711.10337

FIT: Smaller is better
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We don’t want memory GAN.

https://arxiv.org/pdf/1511.01844.pdf
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Real Data

Generated 
Data 

Generated 
Data

Same as real data …

Simply flip real data …



To learn more about evaluation …

Pros and cons of GAN evaluation measures
https://arxiv.org/abs/1802.03446 93



Concluding Remarks 

Introduction of Generative Models

Generative Adversarial Network (GAN)

Theory behind GAN

Tips for GAN

Conditional Generation

Learning from unpaired data

Evaluation of Generative Models
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