Generation
Hung-vi-Lee 27551



Network as Generator

X

N

Simple Network Kemmd¥’
Distribution

— Generator Complex

Distribution

E . .
We know its formulation,
so we can sample from it.



Source: https://github.com/dyelax/Adversarial_Video Generation

Why distribution?

Video Prediction

Previous
frames

Real Video



Source: https://github.com/dyelax/Adversarial_Video Generation

Why distribution?

turn
Video Prediction right

Previous
frames

Prediction



Source: https://github.com/dyelax/Adversarial_Video Generation

Why distribution?

Video Prediction

Previous

frames @

Simple
Distribution

Prediction



Why distribution?

(The same input has different outputs.)
 Especially for the tasks needs “creativity”

Drawing

Character

. mmd Network g
with red eyes

Chatbot

RENVBEIER
N q
SHENE?

WEFHEEESE ...

EEl LR ...

6



Generative Adversarial
Network (GAN)



GAN

* How to pronounce “GAN”?

Google /NH



A” Kinds Of GAN ves https://github.com/hindupuravinash/the-gan-zoo

GAN
ACGAN

BGAN
CGAN

DCGAN
EBGAN
fGAN

GoGAN

SeUDA - Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adapi
Segmentation

SG-GAN - Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption (githu
SG-GAN - Sparsely Grouped Multi-task Generative Adversarial Networks for Facial Attr
SGAN - Texture Synthesis with Spatial Generative Adversarial Networks

SGAN - Stacked Generative Adversarial Networks (github)

SGAN - Steganographic Generative Adversarial Networks

SGAN - SGAN: An Alternative Training of Generative Adversarial Networks

SGAN - CT Image Enhancement Using Stacked Generative Adversarial Networks and Ti
Segmentation Improvement

sGAN - Generative Adversarial Training for MRA Image Synthesis Using Multi-Contrast

SiftingGAN - SiftingGAN: Generating and Sifting Labeled Samples to Improve the Rem
Classification Baseline in vitro

SIGAN - SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face t
SIMGAN - Learning from Simulated and Unsupervised Images through Adversarial Trai

SisGAN - Semantic Image Synthesis via Adversarial Learning

Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, “Variational Approaches for Auto-Encoding
Generative Adversarial Networks”, arXiv, 2017

*We use the Greek « prefix for a-GAN, as AEGAN and most other Latin prefixes seem to have been taken
https://deephunt.in/the-gan-z00-79597dc8c347. 9



Anime Face Generation

* Unconditional generation

Low-dim
vector

(03 ]T01T7]7
—0.1] [-0.1

—0.71 L 0.7 11

Complex

Normal high-dim «~ Distribution

Distribution vector

10



Discriminator It is a neural network

v (that is, a function).

Discri- | Scalar: Larger means real,

image e :
minator smaller value fake.

Discri- —10

! " Vil '1 . -
\F ®, Discri _
~ minator

74 minator

‘YL iseri=_ 1 R‘_' iseri= 71
3

: ‘f minator 4 minator



Basic Idea of GAN

Butterflies are Butterflies do

not brown not have veins

Discriminator




This is where the term

BaSiC |dea Of GAN “adversarial” comes from.

NN NN NN
Generator - Generator - Generator
vl v2 v3
s (I B DR B

w3 Sing . Al ‘-‘ Sl » ! ” ‘
Discri- Discri- Dlscrl-
mlnator » mmator » mlnator

Real images: m&}} \k@“’iﬁ' %)
X 7 Wy " ) “:"’ ‘d% A




Basic Idea of GAN

« BTEHIA - IRIMARA




Algorithm

* Initialize generator and discriminator | G D

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Database

generated
objects

randomly
sampled

Discriminator learns to assign high scores to real objects
and low scores to generated objects.

15



Algorithm

* Initialize generator and discriminator | G D

* In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to “fool” the discriminator

hidden layer
NN Discri- |
—) =)
I Generator minator TR
vector update fix

large network




Algorithm

* Initialize generator and discriminator i D
* In each training iteration:

Sample some
real objects:

Learning Generate some
D fake objects:

Learning
G




Anime Face Generation

et? ("

100 updates

Source of training data: https://zhuanlan.zhihu.com/p/24767059



Anime Face Generatlon

1000 updates

19



Anime Face Generatlon

I
g

‘,r" "h
2000 updates | - VA ¢ ,AI,”

20



Anime Face Generation

..I \l e ’“

e
> ',‘ - -
sidain e AL
ne ™ R ’

> 3

¥ o = . :

ey
5000 updates ;"!m
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Anime Face Generation

LN \ .

Ay - A L 4 ) { v "l 5
i \“\ VIR & N .} y Wl

h R TR TP

| '..‘ |1 ’¢ ‘J p - p
““ I L N w‘ -’ | . -
y . { W \ .
v ~—

20,000 updates

23



Anime Face Generation

50,000 updates ‘; "4

24
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) ‘A';

‘ 3
' ‘.

The faces
generated by
Wa machine.

& 7 AR
SRRy~ AR
PRAESS ~ FEAHE




In 2019, with StyleGAN

Source of video:
https://www.gwern.net/Faces

26



Progressive GAN

https://arxiv.org/abs/1710.10196
27
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The first GAN

https://arxiv.org/abs/1406.2661 (lan J. Goodfellow)
29




Today ...... BigGAN

https://arxiv.org/abs/1809.11096
30




Theory behind GAN



cf. w'b®=argminlL

w,b
Our Objective
PG Pdata
Normal
Distribution

. >
ﬁ G ﬁ .
as close as possible

\

AN AVARANA

G* =arg min Div(Pg, Pigra)

Divergence between distributions P; and Pi,¢4
How to compute the divergence?

32



Sampling is good enough ......
G* =arg mGjn Div(Pg, Pigia)

Although we do not know the distributions of P; and P44,
we can sample from them.

A .
,,w SR sample m W «g(,iw‘ \#)
Database ;* /. & EE—) X, ;\%{.' 4‘@';; y

2 Mo &t

\ <

Sampling from P ;,;,

sample from — e 5"{'5‘-3 8 &
normal e .

Sampling from P

JO]J0A
J0]}29A

33



https://arxiv.org/abs/1406.2661

Discriminator G* = argminDiv(Pg;, Pyata)

G

* : data sampled from P, v : data sampled from P;

**gt

* class1 train

Discriminator

'@ Train a binary classifier

class 2
Training: D* = arg[maxV (D, G)‘ The value is related to JS
D divergence.
Objective Function for D = -

V(G,D) =E,.p,  [logDOV]+E,.p.|log(1 —D())]

D* = arg mSX‘V(D, G)‘ _  Training classifier:

negative cross entropy minimize cross entropy




Discriminator 6" = arg min Div(Ps, Paqtra)

* : data sampled from Py,¢4 Training:
i\( : data sampled from P, D* = arg‘mgx V(D, G)‘

*
* *
Discriminator

** * ** train

small divergence hard to discriminate
Smalljmax V (D, G)‘
* + s
*, Xk

** * train

Discriminator

large divergence easy to discriminate



G* =arg mGjn max V(G,D)

D* = arg‘maxV(D, G)‘ The maximum objective value
D is related to JS divergence.

* |nitialize generator and discriminator

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G




Can we use other divergence?

Name D¢(P|@Q) Generator f(u)

Total variation 2 [ |p(z) — q(z)|da 2w —1]

Kullback-Leibler [ p(x)log? gﬂ dz ulog u

Reverse Kullback-Leibler [ ¢(x)log g{r% dx —logu

Pearson 2 | (qmp f) @)” 4y (u—1)2

2 (p(x)—q(x))* (1—u)?

Neyman y | q(T) da ) u

Squared Hellinger | (\/p(:r) —aq(x) ) dx (Vu—1)°

Jeffirey [ (p() = a(a)) log (25) da (u—1)logu

2p(x) . 2q(x) . . 14w _ -

Jensen-Shannon 1 [ p(x)log m +q(x) log m dx | —(u+1)log +5* + ulogu

Jensen-Shannon-weighted [ p(z)7log i r()ﬁ;J((f)r)q(J) + (1 — 2)%r(;)r) log wp(l:)f((fﬁn)q(r) dr  mulogu — (1 — 7+ 7mu)log(l — m + 7mu)

GAN J p(2)log - + q(2) log w5 dar — log(4) 4 ulogu — (u+ 1) log(u + 1)
Name Conjugate f*(t)
Total variation t

Kullback-Leibler (KL) exp(t—1)

Using the divergence Reverse KL T Tog(—)

i Pearson y? e+t
you ||ke @ Neyman y> 2 —21—1
Squared Hellinger =
Jeffrey W(e™") + i + 1 — 2
. ; (el=*)
https://arxiv.org/abs/1606.00709 Jensen-Shannon “log(2 — exp(t))
Jensen-Shannon-weighted (1 — 7)log — 1= ==

GAN —log(1 —(xp( )) 37



GAN is difficult to train

NO PAIN

N
NOGA N






JS divergence is not suitable

* In most cases, P; and P,;,:, are not overlapped.

* 1. The nature of data
Both P;,¢q, and P are low-dim
manifold in high-dim space.
The overlap can be ignored.

e 2. Sampling

Even though P, .+, and P
have overlap.

If you do not have enough
sampling ......




What is the problem of JS divergence?

JS divergence is always log?2 if two distributions do not overlap.

P data

_—

/ Equally bad X
]S(PGOJ Pdata) ]S(PGl; Pdata) """ ]S(PGlool Pdata)
= log?2 = log?2 =0

1

PGO > Pdata PG D o Pdata ------ PGlOO

Intuition: If two distributions do not overlap, binary classifier
achieves 100% accuracy.

The accuracy (or loss) means nothing during GAN training.



Wasserstein distance

* Considering one distribution P as a pile of earth,
and another distribution Q as the target

* The average distance the earth mover has to move
the earth.

P Q

42



Wasserstein distance

Smaller
distance?

Larger
distance?

—

There are many possible “moving plans”.

Using the “moving plan” with the smallest average distance to
define the Wasserstein distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/  **



What is the problem of JS divergence?

dO dl
P Go | |Paata P G, | Paata - P G100 || Paata
]S(PGo' Pdata) ]S(PG1’ Pdata) """ ]S(PG100’ Pdata)
W(PG(): Pdata) W(Ple Pdata) ------ W(P0100; Pdata)
= dO = dl — O

Better!
—



What is the problem of JS divergence?

do

PG —

0

pigment spot
(limpet, Patella)

photoreceptor
layer
(pigment cells
and nerve cells)

i

L wmey

nerve
fibres

epithelium

P data

Pg

1

Complex eye
(octopus)

refractive lens

iris / cornea

'y 'y
"% § "
‘ 0 0
/% p®
: optic
retina — nerve

vitreous body

https://www.pnas.org/content/104/suppl_1/8567.figures-only 45



https://arxiv.org/abs/1701.07875

WGAN

Evaluate Wasserstein distance between Py, and Pg

= &
mdx { y~Piata [D(y)] — y~PG[D(y)]}

Del—-Lipschitz

D has to be smooth enough. How to fulfill this constraint?

CO

Without the constraint, the
training of D will not converge.

generated

Keeping the D smooth forces
D(y) become o0 and —oo D

46



e {Ey e [DO)] = Eyep [DO)]]

* Original WGAN — Weight
Force the parameters w between c and -c

After parameter update, ifw>c,w=c;ifw<-c,w=-c

* Improved WGAN — Gradient Penalty

https://arxiv.org/abs/1704.00028

samples

* Spectral Normalization = Keep gradient norm

Sma”er than 1 everyWhere https://arxiv.org/abs/1802.05957



GAN is still challenging ...

« Generator and Discriminator needs to match each
other (tEZER{F)

Generate fake images to fool discriminator
Cannot fool the e
. Fail to improve ...
discriminator ...

Discriminator

| cannot tell the
difference ......

Fail to improve ...

Tell the difference between real and fake



More Tips

* Tips from Soumith
 https://github.com/soumith/ganhacks
* Tips in DCGAN: Guideline for network architecture design
for image generation
* https://arxiv.org/abs/1511.06434

* Improved techniques for training GANs
* https://arxiv.org/abs/1606.03498

* Tips from BigGAN
 https://arxiv.org/abs/1809.11096



GAN for Sequence Generation

Non-differentiable ... score
I
[ Discriminator ]
Todo oo
unchanged : @ 1% B £ 2
.llél IIIIIIIIIIIII ?llllIIIIIIIIIIAIIIIIIIIIIIIIIIAI IIIII
max or sample

unchanged

> Generator

update [ Decoder |§ ]
-’




GAN for Sequence Generation

Reinforcement learning (RL) is involved

e ——

Sequence Generation GAN (RL+GAN)

51



GAN for Sequence Generation

* Usually, the generator are fine-tuned from a model learned
by other approaches.

* However, with enough hyperparameter-tuning and tips,
ScarchGAN can train from scratch.

large |
batch
discriminator .
e FED

baseline
SeqGAN-step

regularization |

pretrained .
.. | embeddings I B changes in FED
Training language REINFORCE | I
GANs from Scratch ~ veluePaseine

https://arxiv.org/abs/ ScratchGAN

1905.09922 000 001 0.02 003 004 005 006 0.07 0.08
52




Generative Models

* This lecture: Generative Adversarial Network (GAN)

https://www.youtube.com/playlist?list=PLJV_el3uVTsMq
6JEFPW35BCiOQTsoqwNw



More Generative Models

Variational
Autoencoder (VAE)

[=]:3 ¢ =]

[=]

https://youtu.be/8zomhgKrsmQ

FLOW-based
Model

https://youtu.be/uXY18nzdSsM



| 0.7 | | 0.9 |
[ 0.3 ]
| —0.71

Using typical learning approaches?

Generative Latent Optimization (GLO), https://arxiv.org/abs/1707.05776
Gradient Origin Networks, https://arxiv.org/abs/2007.02798

55



Conditional Generation



Text-to-image
red eyes

N AN .
\’%N\MZ yellow hair
&\xg dark circles

X black hair

red eyes \

red hair,
green eyes

(I
blue hair, Qa
red eyes W

1IN




Conditional GAN

Xx: Red eyes =——p

o G —> Image y = G(c,2)
Normal distribution z =—p

y is real image or not

A :
: v
Y — : D ) —> scalar Generator will learn to
origina

generate realistic images ....
A But completely ignore the
Real images: m 1 input conditions.

Generated images: Image




https://arxiv.org/abs/1605.05396

Conditional GAN

X: Red eyes =——p

o G =—> Image y=(G(c, z2)
Normal distribution z =—p

Y ' D is realistic or not +
—> scalar = ~
(better) x and y are matched or not
x q
True text-image pairs: (red eyes, Eﬂ) 1
-

8 /:\K =
(red eyes, «f\ i\i ) 0 (redeyes, Image ) Q

\ X1



https://arxiv.org/abs/1611.07004

Conditional GAN

WX —
“ G y —_—
Z q
Labels to Street Scene Labels to Facade BW to Color

Day to Night Edges to Photo

:}R\‘\

5

.| ﬂ'}[ I§I|

p T

—— =

| Y

|

input output input output

Image translation, or pix2pix



https://arxiv.org/abs/1611.07004

Conditional GA

E
G —p |Mmage D - SCalar
YA q

Testing:

input supervised

GAN + supervised



https://arxiv.org/abs/1808.04108

Conditional GAN

WWWM x:sound =—p G

"a dog barking sound”

Training Data

Collection WWW

Y

00
L

video




The images are generated by Chia-
Hung Wan and Shun-Po Chuang.

CO N d |t| OonNa ‘ GA N https://wjohn1483.github.io/

audio_to_scene/index.html

e Sound-to-image




Conditional GAN

Talking Head Generation

https://arxiv.org/abs/1905.08233



Conditional GAN

Multi-label Image Classifier = Conditional Generator

person, sports ball,
baseball bat, baseball glove

Generator

person 1
frisbee 0.9 X
I sampling
=| Classifier |=—p | V| =—

.
sports ball 0.5

Fixed feature extractor : f,, =

000 O = =

1

y—

—
—

o
o

Discriminator

= D(7,x)

Input condition

Generated output

| Positive example :
| person, boat, e G
I bird i
| 3

I y

| Negative example:
I

I

|

I

[pe;szn.smzbee] Discriminator

~

4 X
I { | }
I L pizza, cup ] y -
, 1 ——
: y %

https://arxiv.org/abs/1811.04689






Learning from
Unpaired Data



Learning from Unpaired Data

Deep

——— )/
Network

xﬁ

unpaired

HW3: pseudo labeling Still need some
HWS5: back translation paired data



Learning from Unpaired Data

Deep
Network

xﬁ

Image Style
Transfer

' . Dorﬁain
Domain X unpaired Y

Can we learn the mapping without any paired data?
Unsupervised Conditional Generation

69



Learning from Unpaired Data

Domain X Domain Y

70



Cycle GAN

Domain X

-

Become similar
to domain Y

R\

m—bscalar
v

Input image
belongs to
domain Y or not

Domain Y



Cycle GAN

Domain X

Become similar
to domain Y

R\

m—bscalar
v

Input image
belongs to
domain Y or not

ignore input

Domain Y



Cycle GAN

as close as possible

Lack of information
for reconstruction

scalar

' NN
| 4 \ »7 Inputimage
o\ YV . belongs to

domain Y or not
Domain Y Y




Cycle GAN

as close as possible

, S
“Related” to input, so N

possible to reconstruct

scalar

‘ v
4 \‘ »7 Inputimage
T S [4 belongs to

domain Y or not
Domain Y Y




Cycle GAN

as close as possible

AN
4
scalar: belongs to
domain Xor not scalar
AN
\




Dual GAN

https://arxiv.org/abs/1704.02510

Cycle GAN

https://arxiv.org/a
bs/1703.10593

LDB.-{

Reconstruction error
llv = Ga(Gpv.2' ), 2)ll

i cycle-consistency |
: oss

cycle-consistency
A% loss




(a) Cross-domain models (b) StarGAN

StarGAN

L G21
https://arxiv.org/abs/1711.09020 $ @

(a) Training the discriminator (b) oOriginal-to-target domain (c) Target-to-original domain (d) Fooling the discriminator

| Depth-wise concatenation 1

) ~ . Original )
Fake image —— Fake image ancen Fake image

S Target domair Input i e
——— S TR -
classification arget comain LELA

Depth-wise concatenation







SELFIE2ANIME  [ips/fseliezanime.com/



https://selfie2anime.com/

Text Style Transfer

ERH =2V
Y 154 @~ Y FIF- @~

FARAES ... @& LMBIRE ©
= — BV
Y @&~ P 2% @~
| feel sad. . SRRKIAEL &
r = |
e
v 150E ax P Rl @ v
HHAZEMEEA QQ It is excellent! &
REX RE 2R
(negative) (positive)



Text Style Transfer

Cycle GAN

o =

=
ol’ DBTREF ¢
O ==z

positive

;’Eﬁh- + : )  POositive or not?
u ;‘g: Discriminator

'T/J\
(negatlve)

‘% (negatlve)

Squseq

minimize the reconstruction error




Bl ¥ RIS B R

R 0 e e

Text Style Transfer o/ Y

* From negative sentence to positive one

BE R ZEAGTR
A A LT 1, BEZRsAY!

/

£ 1, 126ER - SRBAEZREIT

Bh FROEE




Unsupervised Abstractive
Summarization

https://arxiv.org/abs/1810.02851

Unsupervised Translation

https://arxiv.org/abs/1710.04087
https://arxiv.org/abs/1710.11041

Unsupervised ASR

https://arxiv.org/abs/1804.00316
https://arxiv.org/abs/1812.09323
https://arxiv.org/abs/1904.04100

s

document summary
e 8, S0, S S i N L
4’/{0‘33“ " LY\ ‘\i&gopeng&\ %33/: '(li, g g ’fi‘ f
K \“3\\‘\‘*“»“ BETVIUEE
“g piAasLul)
& AR .
\@% & ?‘ﬁgglfﬁrz« ]
Language 1 Language 2

Audio Text



Evaluation of Generation



Quality of Image

 Human evaluation is expensive (and sometimes
unfair/unstable).

* How to evaluate the quality of the generated
images automatically?

class 2

Off-the-shelf

Y image mmmp P(cly)

o m—-
Image Classifier C'a%1 class 3

e.g., Inception net,
VGG, etc. Concentrated distribution

means higher visual quality

85



Diversity - Mode Collapse

Y : real data
i\( . generated data



Diversity - Mode Dropping

* : real data
* : generated data

Generator
at iteration t

Generator
at iteration t+1

(BEGAN on CelebA)



Diversity

class 2

(clyl)
> m > class 1 class 3

class 2

] m P(cly?)
y lass 1
c class 3

class 2

3 )2 3
y A’M class 1 class 3 (Cly )
: J

P(c)
1
== P(ely™

class 2

class 1 class 3

low diversity

88



Inception Score (IS):
Good quality, large diversity — Large IS

Diversity )
class 2 1
P(cly™)
class 1 class 3 P(C)
— = ' Plely™
class 1 B N Cly
n
P(cly?)
class 2
— class 3
class 3 Uniform means
higher variety
lass 1 3
CasscIassZ P(Cly )
J

What is the problem here? ©

89



https://arxiv.org/pdf/1706.08500.pdf

Fréchet Inception Distance (FID)

red points: real images
blue points: generated images

FID = Fréchet distance -5,
between the two Gaussians

Smaller is better




GAN DISCRIMINATOR LOSS GENERATOR LOSS

MMGAN L3 = —E.,[log(D(x))] + Eznp, [log(1 — D(2))] Lo = Lo

NS GAN L0 = £oa LY = Bep, [log(D(2))]
WGAN LY = —E,op, [D(2)] + Ezmp, [D(2)] LU = LRGN

WGAN GP L3 = L3 4 AEs, [(|[VD(az 4+ (1 = a@)||2 = 1)%] L3 = —Esnp, [D(#)]
LSGAN L5 = —E,p,[(D(z) = 1)*] + Esnp, [D(2)?] LE = —Ezp, [(D(E 1))
DRAGAN  LOMOAN = £ 4 AR vo.ol([VD(@E)||2 — 1)?] [DRAGAN _ _ /NS GAN

BEGAN  LE™ = E.op,[lJz — AE(@)|)] = kEing, [I|& — AE(2)|[1] L5 = Esvp, [ — AE(2)]|1]

Datasel = MNIST

I
[

t,p & f 4 “éqf"“&fﬁ

FIT: Smaller is better

o
L=

FID Score
S

[
=]

i
=

140

120

100

a0

60

40

20

Datasel = FASHION-MNIST

|

|

'

{f#’fﬁf “‘d& qur ” a‘&\ o

:

250

200

150

100

50

Dataset = CIFARLD

i’

RXT TP E

Dataset = CELEBA

T 250 E !
| 200 1 a
I 100 * “' +
50 I

& f-"ﬁﬁffé’s}*fﬁ

-

Are GANs Created Equal? A Large-Scale Study

https://arxiv.org/abs/1711.10337
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https://arxiv.org/pdf/1511.01844.pdf

We don’t want memory GAN.

Wy 0N e

Real Dat - Ba . | |\
W) N N \ v \
Generated ), ' ‘ GC{\@* %
Data 1 % /‘¥/‘ >

Same as real data ...
Generated y ﬁ ('c/ ,55 Q\V
Data ! . 4

Simply flip real data

92



To learn more about evaluation ...

Measure

Desceription

Quantitative

==

=

-
i

9.

10
11

12
13
11

. Average Log-likelihood [18, 22|

2. Coverage Metric [33)

3. Inception Score (18) [4)
. Maodified Inception Score (m-15) |41)

. Mode Score (MS) [45)
h. AM Score |36)

. Fréchet Inception Distance (FID) [37]

8 Maximum Mean Discrepancy (MMD)
135

The Wasserstein Critie |49)

. Birthday Paradac Test [27]

. Classifier Two Sample Test (C25T') [40)

. Classifieation Performance |1, 15

. Boundary Distortion [12]
. Number of Statistically-Different Bins

(NDB) [43]

15.

16

Image Retrieval Performance |[14]
, Generative Adversarial Metrie (GAM)

|51

17

Tonrnament Win Rate and Skill

Rating |15]

15

. Normalized Relative Discriminative

Scare (NRDS) [32]

19
|1¢

20,

. Adversarisl Acouraey and Divergence
i)

Geometry Score [47)

e Log likelihood of explaining realworld held ont/test data using a density estimated from the generated data
(.9, using KDE or Parzen window estimation), L = 4 5 log Prade (%)

e The probability mass of the true data "covered”™ by the model distribution
C 1= Pyt (dPoder > t) with t such that P e i(d Proder > 1) = 0,05

o KLD between conditional and marginal label distributions over generated data, exp (Ex [KL (ply | x) || p(y))])

o Encourages diversity within images sampled from a particular category, exp(Ex [Ex [(ELUP(y]x [P0 (%, 1))

o Similar to 19 ol ako takes mto account the prior distribution of the labels over real data.
,.x',(g‘ [KL (l’(ll | x) " I ("lranlJJ( KL (I’("] || p (II"“""JJJ

o Takes into account the KED hetween distributions of training labels v, predicted Tabels,
as well as the entropy of predictions. KL(p(y""™") || ply))+ E,[H(ulx)E

o Wasserstein-2 distance between multi-variate Ganssians ftted to data embedded into a Teature space
FID(r, ) = |lpte ~ pigl§ + Tr(Ee + £y - 28,5,

o Measures the dissimilarity between two probability distributions Froand Py wsing samples drawn independently
from each distribution. My(Pe, Py) = Ey o p, [R(%,X')] = 2B py yor, [R(X0)] + By o p, Ry 0")]

® The critic (e.g. a0 NN 15 trained (o produce high values at real samples and low values at generatod samples

W i(Xtest, Xg) = {v Z;\:l i(!(ru!lil) - J.' Z::‘_l flx»|']]

o Measures the support size of a discrete (continuous ) distribution by counting the duplicates (near duplicates)

o Answers whother two samples are drawn from the same distribution (e g by training a binary classiber)

o Anindivect technigue for evaluating the quality of nnsupervised representations
(e.q. feature extraction; FON seore), See also the GAN Quality Index (GQI) [41],

o Measures diversity of generated samples and covariate shift wsing elassihication methods,

o Given two sots of samples from the same distribution, the number of samples that
fall into a given bin should be the same up to sampling nolse

o Measures the distributions of distances to the nearest neighbom of some query images (1.e. diversity)

® Compares two GANS by Taving them engaged 1o Dattle against each olher Ty swapping discriminatons
or generators. p(x|y = L M) /pix|y = ;ML) = (ply = 1x; D1 )p(x: G2))/ (ply = 1x; Da)p(x:Gy))

o lmplments a tournament i which a player is either a diseriminator that attempts to distinguish hetween
real and fake data or a generator that attempts to fool the diseriminators into accepting fake data as real,

® Compares 11 G ANS Dased on 1he 1den That 11 1he generated samples are closer 1o tenl ones,
maore epochs would be needed to distinguish them from real samples,

® Adversarial Accuracy, Compites the cassilieatlon aceutaclos achleved by Uhe two class ors, one tralned
on real data and another on generated data, on a labeled validation set to approximate P (y|x) and P (y|x),
Adversarial Divergence: Computes KL(P, (%), Pr(w]x))

o Compares geometrieal properties of the underlying data manifold hetween real and generated data,

o Measures the recormtroction error (e.g. Lo norm) between a test image and [is elosest

Qualitative

21, Reconstruction Ervor |15 3 v d . .
5 [45] geverated image by optimizing for = (1.6, ming||Glz) ~ x'"*"||?)
22, Tmage Quality Measures [19, 50, 51| o o luates the quallty of generated images nsing measires such as S9IM, PANI, and sharpooss dillerence
23, Low-lvel Image Statistics [52, 53] o Palnates how similar lowslevel statistics of generated llm‘uun are to those ol natural seenes
in terns of mean power spectrum, distribution of random filter responses, contrast distribution, ete,
24, Precision, Recall and Fy score [23] o These measures are used to quantily the degree of averlitting in GANs, often over toy datasets,
1. Nearest Neighbors o To detect overlitting, generated samphs are shown next to their pearest neighbors in the training set

2

-

=

Rapid Scene Categorization |18]

. Preference Judgment |54, 55, 56, 57|

» Mode Drop and Collpse [55, 59|

. Network Internals |1, 60, 61, 62, 63, 64|

o [ these experiments, participants are askod to distinguish genorated samplos from real mages
in a short presentation time (e.g. 100 ms); 1.6 real vis fake

o Participants are asked to rank models in terne of the Bidellty of their generated lmages (e.9. pains, triples)

o Over datasets with known modes (e.g. o GMM or a Tabelad dataset), modes are computed as by measuring
the distamnces of generated data to mode centers

o Hegards exploring and Hlostrating the Tnternnl representation and dy nmmies of models (e g wpace continuity )
ws o well as visoalizing learped features

Pros and cons of GAN evaluation measures
https://arxiv.org/abs/1802.03446
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Concluding Remarks

Introduction of Generative Models

Generative Adversarial Network (GAN)
Theory behind GAN

Tips for GAN

Conditional Generation

Learning from unpaired data

Evaluation of Generative Models
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