
Machine Learning Homework 8
Anomaly Detection

ML TAs
ntu-ml-2021spring-ta@googlegroups.com

mailto:ntu-ml-2021spring-ta@googlegroups.com

Goal
● Unsupervised anomaly detection in computer vision: Whether a machine

learning model is able to tell a testing image is of the same class
(distribution) as the training images

Goal
● Unsupervised anomaly detection in computer vision: Whether a machine

learning model is able to tell a testing image is of the same class
(distribution) as the training images

Model

Training

Goal
● Unsupervised anomaly detection in computer vision: Whether a machine

learning model is able to tell a testing image is of the same class
(distribution) as the training images

Model

Training Testing

Model
Seen

Normal

Goal
● Unsupervised anomaly detection in computer vision: Whether a machine

learning model is able to tell a testing image is of the same class
(distribution) as the training images

Model

Training Testing

Model

Model

Seen

Unseen

Normal

Anomaly

Data
● Trainingset: About 140k human faces (size 64*64*3)
● Testingset: Another 10k data from the same distributions as the

trainingset (normal data, of class label 0) along with 10k human face
images from the other distributions (anomalies, of class label 1)

● Notice: Additional training data and pretrained models are prohibited
● Data format: tar zxvf data-bin.tar.gz
● data-bin/

○ trainingset.npy

○ testingset.npy

Method - Autoencoder

Autoencoder
● When to stop training? Training should stop when the mse loss converges
● During inference, we calculate the reconstruction error between the input

image and the reconstructed one
● The reconstruction error will be referred to as abnormality (anomaly

score)
● The abnormality of an image can be a metric of the possibility that it’s

distribution is unseen during training
● Therefore we use the abnormality as our predicted values

Accuracy score
● Usually we compute accuracy scores for classification tasks
● Here, our model functions as a sensor (or a detector) rather than a

classifier
● Thus, we need a threshold with respect to abnormality (usually the

reconstruction error) to determine whether a piece of data is an anomaly
● If we used accuracy score for this assignment, you would have to try every

possible threshold for one single model to get a satisfactory score
● However, what we want is a sensor that gets the highest accuracy on the

average of every possible threshold

Which sensor is better?

Metric - ROC_AUC score
● A good sensor should

○ Give high anomaly scores to the anomalies and low scores to the normal data
○ Exhibit a large gap between the scores of 2 groups

● An ROC is suitable for our task
● Each point on the ROC curve stands for true positive rate and false

positive rate at certain threshold
● The Area Under the ROC curve is calculated to measure the general ability

of the model

ROC_AUC score

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC_AUC score

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Kaggle
Metric: ROC_AUC score
Sample output:

How ROC AUC is calculated

https://towardsdatascience.com/how-to-calculate-use-the-auc-score-1fc85c9a8430

ID Anomaly score Label

0 11383 0

1 256676 1

2 862365 1

3 152435 0

4 848171 0

ID Anomaly score Label

2 862365 1

4 848171 0

1 256676 1

3 152435 0

0 11383 0

Sort
by
score

https://towardsdatascience.com/how-to-calculate-use-the-auc-score-1fc85c9a8430

How ROC AUC is calculated

ID Anomaly score Label
fp before
normalization

tp before
normalization

2 862365 1 0 1

4 848171 0 1 1

1 256676 1 1 2

3 152435 0 2 2

0 11383 0 3 2

How ROC AUC is calculated

ID
Anomaly
score Label fp tp

0 11383 0 0 0.5

3 152435 0 0.333333 0.5

1 256676 1 0.333333 1

4 848171 0 0.666667 1

2 862365 1 1 1

Area Under Curve: 0.5*⅓ + ⅔ = 0.8333

Scoring
● Code submission: 4 pt
● Baselines 6 pt (3 pt for the public ones and the other 3 pt for the private

ones)
○ Simple public: 1 pt (public score: 0.64046)
○ Medium public: 1 pt (public score: 0.75719)
○ Strong public: 0.5 pt (public score: 0.81304)
○ Boss public: 0.5 pt (public score: 0.86590)
○ Simple private: 1 pt
○ Medium private: 1 pt
○ Strong private: 0.5 pt
○ Boss private: 0.5 pt

● Bonus for submitting report: 0.5 pt

Bonus
● If you succeed in beating both boss baselines, you can get extra 0.5 pt by

submitting a brief report to explain your methods (in less than 100 English
words), which will be made public to the whole class

● Report Template

https://docs.google.com/document/d/1tGRCzLBWuGT3G7G87e3tZ0LQ-ivWVxA0JYlIxfV63kc/edit

Baseline guides
● Simple

○ FCN autoencoder

● Medium
○ CNN autoencoder
○ Try smaller models (less layers)
○ Smaller batch size

● Strong
○ Add BatchNorm
○ Train for longer

● Boss:
○ Add an extra classifier
○ Sample random noises as anomaly images
○ Or one-class-classification (OCC) with GANs: OCGAN, End-to-end OCC, paper pool for

Anomaly Detection

https://arxiv.org/pdf/1903.08550.pdf
https://ieeexplore.ieee.org/document/9059022
https://github.com/hoya012/awesome-anomaly-detection#anomaly-classification-target
https://github.com/hoya012/awesome-anomaly-detection#anomaly-classification-target

Baseline training statistics
● Simple

○ Number of parameters: 3176419
○ Training time on colab: ~ 30 min

● Medium
○ Number of parameters: 47355
○ Training time on colab: ~ 30 min

● Strong
○ Number of parameters: 47595
○ Training time on colab: 4 ~ 5 hrs

● Boss:
○ Number of parameters: 4364140
○ Training time on colab: 1.5~3 hrs

Strong baseline training curve

Loss

Steps

Code Submission
● Zip your code and name the compressed file <student_id>_hw8.zip
● And it should contain

○ Your codes

○ report.pdf (only for those beating both boss baselines)
● Submit <student_id>_hw8.zip via NTU COOL

Code Submission
● DO

○ Specify the source of your code. (You may refer to Academic Ethics Guidelines)
○ Organize your code and make it easy to read (not necessary)

● DO NOT
○ Submit empty or garbage files
○ Submit the dataset or model
○ Compress your codes into other formats like .rar or .7z and simply rename it to .zip

● Note
○ We can only see your last submission
○ Do not submit your model or dataset
○ If your code is not reasonable, your semester grade x 0.9

https://www.most.gov.tw/most/attachments/9149925d-ec63-40b0-8ec8-c583008a43c1?

Regulations
● Plagiarism is not allowed
● Do not modify your prediction file
● Do not share your prediction file with anyone
● Do not submit your prediction file more than 5 times to Kaggle in any way
● Do NOT search or use additional data or pre-trained models.
● Violators are subject to x 0.9 of their semester grades
● Prof. Lee & TAs preserve the rights to change the rules & grades

Important dates
● Kaggle deadline: 5/21 23:59 (GMT+8)
● Code & report deadline: 5/23 23:59 (GMT+8)
● Late submissions are NOT allowed

Links

● Kaggle: https://www.kaggle.com/c/ml2021spring-hw8

● Colab:
https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1
rQ?usp=sharing

https://www.kaggle.com/c/ml2021spring-hw8
https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1rQ?usp=sharing
https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1rQ?usp=sharing

Contact TAs
● NTU COOL (recommended)

○ https://cool.ntu.edu.tw/login/portal

● Email:
○ ntu-ml-2021spring-ta@googlegroups.com
○ The title should begin with [hw8]

● TA hour

○ Each Monday 19:00 ~ 21:00 at Room 101, EE2 (電二 101)

○ Each Friday before (13:30 ~ 14:20) & during class at Lecture Hall

https://cool.ntu.edu.tw/login/portal
mailto:ntu-ml-2021spring-ta@googlegroups.com

