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Goal
● Unsupervised anomaly detection in computer vision: Whether a machine 

learning model is able to tell a testing image is of the same class 
(distribution) as the training images
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Data
● Trainingset: About 140k human faces (size 64*64*3) 
● Testingset: Another 10k data from the same distributions as the 

trainingset (normal data, of class label 0) along with 10k human face 
images from the other distributions  (anomalies, of class label 1) 

● Notice: Additional training data and pretrained models are prohibited
● Data format: tar zxvf data-bin.tar.gz
● data-bin/

○ trainingset.npy

○ testingset.npy



Method - Autoencoder



Autoencoder
● When to stop training? Training should stop when the mse loss converges
● During inference, we calculate the reconstruction error between the input 

image and the reconstructed one 
● The reconstruction error will be referred to as abnormality (anomaly 

score)
● The abnormality of an image can be a metric of the possibility that it’s 

distribution is unseen during training
● Therefore we use the abnormality as our predicted values



Accuracy score
● Usually we compute accuracy scores for classification tasks
● Here, our model functions as a sensor (or a detector) rather than a 

classifier
● Thus, we need a threshold with respect to abnormality (usually the 

reconstruction error) to determine whether a piece of data is an anomaly
● If we used accuracy score for this assignment, you would have to try every 

possible threshold for one single model to get a satisfactory score
● However, what we want is a sensor that gets the highest accuracy on the 

average of every possible threshold



Which sensor is better?



Metric - ROC_AUC score
● A good sensor should

○ Give high anomaly scores to the anomalies and low scores to the normal data
○ Exhibit a large gap between the scores of 2 groups

● An ROC is suitable for our task
● Each point on the ROC curve stands for true positive rate and false 

positive rate at certain threshold
● The Area Under the ROC curve is calculated to measure the general ability 

of the model



ROC_AUC score

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Kaggle
Metric: ROC_AUC score
Sample output:



How ROC AUC is calculated

https://towardsdatascience.com/how-to-calculate-use-the-auc-score-1fc85c9a8430

ID Anomaly score Label

0 11383 0

1 256676 1

2 862365 1

3 152435 0

4 848171 0

ID Anomaly score Label

2 862365 1

4 848171 0

1 256676 1

3 152435 0

0 11383 0

Sort 
by 
score

https://towardsdatascience.com/how-to-calculate-use-the-auc-score-1fc85c9a8430


How ROC AUC is calculated

ID Anomaly score Label
fp before 
normalization

tp before 
normalization

2 862365 1 0 1

4 848171 0 1 1

1 256676 1 1 2

3 152435 0 2 2

0 11383 0 3 2



How ROC AUC is calculated

ID
Anomaly 
score Label fp tp

0 11383 0 0 0.5

3 152435 0 0.333333 0.5

1 256676 1 0.333333 1

4 848171 0 0.666667 1

2 862365 1 1 1

Area Under Curve: 0.5*⅓ + ⅔  = 0.8333



Scoring
● Code submission: 4 pt
● Baselines 6 pt (3 pt for the public ones and the other 3 pt for the private 

ones)
○ Simple public:     1 pt       (public score:  0.64046)
○ Medium public:  1 pt       (public score: 0.75719)
○ Strong public:     0.5 pt    (public score: 0.81304)
○ Boss public:        0.5 pt    (public score: 0.86590)
○ Simple private:     1 pt      
○ Medium private:  1 pt       
○ Strong private:     0.5 pt    
○ Boss private:        0.5 pt    

● Bonus for submitting report: 0.5 pt



Bonus
● If you succeed in beating both boss baselines, you can get extra 0.5 pt by 

submitting a brief report to explain your methods (in less than 100 English 
words), which will be made public to the whole class

● Report Template

https://docs.google.com/document/d/1tGRCzLBWuGT3G7G87e3tZ0LQ-ivWVxA0JYlIxfV63kc/edit


Baseline guides
● Simple

○ FCN autoencoder

● Medium
○ CNN autoencoder
○ Try smaller models (less layers)
○ Smaller batch size

● Strong
○ Add BatchNorm
○ Train for longer

● Boss:  
○ Add an extra classifier
○ Sample random noises as anomaly images
○ Or one-class-classification (OCC) with GANs:  OCGAN, End-to-end OCC, paper pool for 

Anomaly Detection

https://arxiv.org/pdf/1903.08550.pdf
https://ieeexplore.ieee.org/document/9059022
https://github.com/hoya012/awesome-anomaly-detection#anomaly-classification-target
https://github.com/hoya012/awesome-anomaly-detection#anomaly-classification-target


Baseline training statistics
● Simple

○ Number of parameters: 3176419
○ Training time on colab: ~ 30 min

● Medium
○ Number of parameters: 47355
○ Training time on colab: ~ 30 min

● Strong
○ Number of parameters: 47595
○ Training time on colab:  4 ~ 5 hrs

● Boss:  
○ Number of parameters: 4364140
○ Training time on colab: 1.5~3 hrs



Strong baseline training curve

Loss

Steps



Code Submission
● Zip your code and name the compressed file <student_id>_hw8.zip 
● And it should contain

○ Your codes

○ report.pdf (only for those beating both boss baselines)
● Submit <student_id>_hw8.zip via NTU COOL



Code Submission
● DO

○ Specify the source of your code. (You may refer to Academic Ethics Guidelines)
○ Organize your code and make it easy to read (not necessary)

● DO NOT
○ Submit empty or garbage files
○ Submit the dataset or model
○ Compress your codes into other formats like .rar or .7z and simply rename it to .zip

● Note
○ We can only see your last submission
○ Do not submit your model or dataset
○ If your code is not reasonable, your semester grade x 0.9

https://www.most.gov.tw/most/attachments/9149925d-ec63-40b0-8ec8-c583008a43c1?


Regulations
● Plagiarism is not allowed
● Do not modify your prediction file
● Do not share your prediction file with anyone
● Do not submit your prediction file more than 5 times to Kaggle in any way 
● Do NOT search or use additional data or pre-trained models.
● Violators are subject to x 0.9 of their semester grades
● Prof. Lee & TAs preserve the rights to change the rules & grades



Important dates
● Kaggle deadline: 5/21 23:59 (GMT+8)
● Code & report deadline: 5/23 23:59 (GMT+8)
● Late submissions are NOT allowed



Links

● Kaggle: https://www.kaggle.com/c/ml2021spring-hw8

● Colab: 
https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1
rQ?usp=sharing

https://www.kaggle.com/c/ml2021spring-hw8
https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1rQ?usp=sharing
https://colab.research.google.com/drive/1D_8lkhzLfoVhA6bTekf-Yw82o6P4g1rQ?usp=sharing


Contact TAs
● NTU COOL (recommended)  

○ https://cool.ntu.edu.tw/login/portal

● Email: 
○ ntu-ml-2021spring-ta@googlegroups.com
○ The title should begin with [hw8]

● TA hour

○ Each Monday 19:00 ~ 21:00 at Room 101, EE2 (電二 101)

○ Each Friday before (13:30 ~ 14:20) & during class at Lecture Hall

https://cool.ntu.edu.tw/login/portal
mailto:ntu-ml-2021spring-ta@googlegroups.com

