Machine Learning HW9

Explainable AI

ML TAs
ntu-ml-2021spring-ta@googlegroups.com
Outline

● Topic I: CNN
 ○ Model & dataset
 ○ Task
 ○ Lime
 ○ Saliency Map
 ○ Smooth Grad
 ○ Filter Visualization
 ○ Integrated Gradient

● Topic II: BERT
 ○ Attention Visualization
 ○ Embedding Visualization
 ○ Embedding Analysis
Topic I: CNN explanation
Model: food classification

- We use a trained classifier model to do some explanations
- The classifier model is a CNN model, aim to classify different kinds of food
- Dataset: 11 categories of food (same dataset in HW3)
- Bread, Dairy product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup, and Vegetable/Fruit
- We only pick up 10 images in trainset for observation
Task

- Run the sample code and finish 20 questions (all multiple choice form)
- We’ll cover 5 explanation approaches
 - Lime package
 - Saliency map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradients
- You need to:
 - Know the basic idea of each method
 - Run the code and observe the results
 - For some case you may need to modify a little part of the code
Task: observation

- To finish this homework, you only need to observe these ten images.
- Please make sure you got these 10 images in your code.
- We encourage you to observe other images!
Lime

Question 1 to 4

- Install the Lime package > pip install lime==0.1.1.37

GitHub Repo: https://github.com/marcotcr/lime

Ref: https://goo.gl/anaxvD
Saliency Map

Question 5 to 9

- Compute the gradient of output category with respect to input image.

Ref:
https://medium.com/datadriveninvestor/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4
Smooth Grad

Question 10 to 13

- Randomly add noise to the input image, and get the heatmap. Just like what we did in the saliency method.

Ref:
Filter Visualization

Question 14 to 17

- Use **Gradient Ascent** method to find the image that activates the selected filter the most and plot them (start from white noise).
Integrated Gradients

Question 18 to 20

● Flexible baseline

\[(x_i - \bar{x}_i) \cdot \int_{\alpha=0}^{1} \frac{\partial S_c(\tilde{x})}{\partial (\tilde{x}_i)} \bigg|_{\tilde{x} = \bar{x} + \alpha(x - \bar{x})} d\alpha\]

Ref:
Topic II: BERT explanation
Attention Visualization

Question 21 to 24

Visualize attention mechanism of bert using

https://exbert.net/exBERT.html

Objective:

(1) What are the functions of different attention heads?

(2) How does the model predict masked words?

Alternative Link

https://huggingface.co/exbert

Tutorial: https://youtu.be/e3IoYfo_thY
Embedding Visualization

Question 25 to 27

Visualize embedding across layers of bert using PCA (Principal Component Analysis)

Objective:

(1) How does bert solve question answering?
(2) Change of embedding before and after fine-tuning

You only need to change code in the section “TODO”!
Embedding Analysis

Question 28 to 30

Compare output embedding of bert using

(1) Euclidean distance

(2) Cosine similarity

Objective:

(1) Observe different meanings for the same word

(2) Observe representation in different layers

You only need to change code in the section “TODO”!
Grading

- 30 multiple choice questions
- **CNN:** 20 questions
 - 0.3 pt for each question
- **BERT:** 10 questions
 - 0.4 pt for each question
- You have to choose ALL the correct answers for each question
Submission

- No late submission!
- Deadline: 2021/5/28 23:59
Reminder

● Please don’t change the original code, unless the question request you to do so.
● If there is any confusion, email the TA with the subject “[HW9] ...”
Links

- Code:
 [Colab]

- Questions:
 [NTU COOL]
If any questions, you can ask us via...

- NTU COOL (recommended)
 - https://cool.ntu.edu.tw/courses/4793
- Email
 - ntu-ml-2021spring-ta@googlegroups.com
 - The title **must** begin with “[hw9]”
- TA hours
 - Each Monday 19:00~21:00 @Room 101, EE2 (電機二館101)
 - Each Friday 13:30~14:20 Before Class @Lecture Hall (綜合大講堂)
 - Each Friday During Class