Hw14 Lifelong Learning

ML TAs

ntu-ml-2021spring-ta@googlegroups.com

Outline

- Introduction
- Dataset
- Sample Code
- COOL Quiz
- Grading
- Submission

Introduction - LifeLong Learning

Goal: A model can beat all task!

Introduction - LifeLong Learning

Condition: Model Sequentially Learn Different Task! (In Training Time)

Introduction - LifeLong Learning

Avoid Catastrophic Forgetting

Introduction

Permuted MNIST

task: 2 label: 0

task: 1 label: 1 [

task: 2 label: 1

task: 1 label: 2

task: 2 label: 2

task: 3 label: 2

task: 2 label: 3

task: 1 label: 4

task: 1 label: 5

task: 2 label: 6

task: 1 label: 6

6

task: 2 label: 7

task: 1 label: 7

7

task: 3 label: 0

task: 3 label: 4

task: 3 label: 5

task: 3 label: 8

task: 3 label: 9

task: 1 label: 9

Sample Code - Training Detail

- 5 task / Each task has 10 epoches for training.
- Each method cost ~20 minutes for training model.
- <u>CoLab Link</u> (copy to your drive first! Don't simply run colab.)

Sample Code - Methods

- Baseline
- EWC
- MAS
- SI

RWalk

• SCP

Sample Code - Guideline

- Utility
- Visualization
- Methods

• Utility

- Permutation
- Dataloader and Training Argument
- Model
- train
- evaluate
- evaluate metric
- Visualization
- Methods

- Utility
 - Permutation
 - Dataloader and Training Argument
 - Model
 - train
 - evaluate
 - evaluate metric
- Visualization
- Methods

0	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14	15	
16	17	18	19	

	0	4	1	5		0	4
	6	7	8	12		6	7
>	15	17	13	14		15	17
	19	18	3	2		19	18
	9	16	11	10		9	16
	•				•		

0	4	1	5
6	7	8	12
15	17	13	14
19	18	3	2
9	16	11	10

INPUT

PERMUTATION

OUTPUT

5 PERMUTATION = 5 TASK

Fixed model size!

 \square

)

- Utility
 - Permutation
 - Dataloader and
 - Model
 - o train
 - evaluate
 - evaluate metric
- Visualization
- Methods

```
Model(
(fc1): Linear(in_features=784, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out_features=512, bias=True)
(fc3): Linear(in_features=512, out_features=256, bias=True)
(fc4): Linear(in_features=256, out_features=10, bias=True)
(relu): ReLU()
```

• Utility

- Permutation
- Dataloader and Training Argument
- Model
- train
- evaluate
- evaluate metric

In k th task:

- Visualization
- Methods

 $AverageAccuracy_k = rac{1}{k} \Sigma_{j=1}^k a_{k,j}$

- Utility
- Visualization
- Methods

Sample Code - Guideline

- Utility
- Visualization
- Methods
 - Baseline
 - EWC
 - MAS
 - o SI
 - RWalk
 - SCP

Baseline

Sequentially Train

Training Pipeline:

Lifelong learning class

Lifelong learning class

EWC - Elastic Weight Consolidation

- 1. You need to know how to generate Guardiance weight from EWC!
- 2. Do this method need to use label?
- 3. Hint: (trace the class ewc and its calculate_importance function)

Paper Link: <u>https://arxiv.org/pdf/1612.00796.pdf</u>

MAS - Memory Aware Synapse

- 1. You need to know how to generate Guardiance weight from MAS!
- 2. Do this method need to use label?
- 3. Hint: (trace the class mas and its calculate_importance function)

Paper Link: <u>https://arxiv.org/abs/1711.09601</u>

SI - Synaptic Intelligence

- 1. You need to know how to generate Guardiance weight from SI!
- 2. Do this method need to use label?
- 3. Hint: (Accumulated loss change in each update step)

Paper Link: https://arxiv.org/abs/1703.04200, Talk Slide

SI - Main Idea

$$L(\theta) = L_2(\theta) + c \sum_i \Omega_i (\theta_i - \theta_{1,i}^*)^2$$

From learning trajectory

Parameter importance on-line from learning trajectory!

Picture comes from: <u>Talk Slide</u>

SI - Abstract

Leveraging per-parameter importance for continual learning

$$L(\theta) = L_2(\theta) + c \sum_i \Omega_i \left(\theta_i - \theta_{1,i}^*\right)^2$$

$$\Omega_i \equiv \frac{\omega_i}{(\Delta_i)^2 + \epsilon}$$

SI - Method

Total change in loss is given by the path integral over the gradient field

RWalk - Remanian Walk

- 1. Trace class rwalk and its update function!
- 2. Do this method need to use label?
- 3. Hint:(The code is similar to two method which mentioned in sample code)

Paper Link: https://arxiv.org/abs/1801.10112

SCP - Sliced Cramer Preservation

1.Paper Link: <u>https://openreview.net/pdf?id=Blge3TNKwH</u>

2.Do this method need to use label?

• Propose Distributed-based Distance to prevent fast intransigence and avoid overestimate the importance of parameter.

intransigence

Model do not want to learn new task, and it just keep old task performance

SCP - Sliced Cramer Preservation (Hint)

1.

Paper Link: https://openreview.net/pdf?id=Blge3TNKwH

COOL Quiz

- 25 multiple choice questions
- Basic Concept & Dataset : 4 Questions
- Sample Code: 15 Questions
 - EWC: 3 Questions
 - MAS: 3 Questions
 - SI: 3 Questions
 - Remanian Walk: 3 Questions
 - Sliced Cramer Preservation: 3 Questions
- Other Methods & scenario: 6 Questions
 - ICaRL, LwF, GEM, DGR
 - Three Scenario

Grading

- All Questions (0.4pt)
- You have to choose ALL the correct answers for each question
- Warning: The answers in NTU Cool are not correct, NTU grading score before deadline is not the final grading score.
- Please do not select the choice depends on the grading score.

Submission

- No late submission!
- We can only pick the last submission!
- Deadline: 2021/07/02 23:59
- Warning: The answers in NTU Cool are not correct, NTU grading score before deadline is not the final grading score.
- Please do not select the choice depends on the grading score.

Links

- <u>CoLab Link</u>
- NTU Cool Multiple Choice Question
- Warning: The answers in NTU Cool are not correct, NTU grading score before deadline is not the real grading score.
- Please do not select the choice depends on the grading score.

If any questions, you can ask us via...

- NTU COOL (recommended)
 - <u>https://cool.ntu.edu.tw/courses/4793</u>
- Email
 - <u>ntu-ml-2021spring-ta@googlegroups.com</u>
 - The title must begin with "[HW14]"
- TA hours
 - 。 Each Monday 19:00~21:00 線上
 - Each Friday 13:30~14:20 線上
 - Each Friday During Class