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https://world.edu/lifelong-learning-part-time-undergraduate-provision-crisis/
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Life Long Learning (LLL), Continuous Learning,
Never Ending Learning, Incremental Learning



Life Long Learning
in real-world applications

“New task”

’0
.0
L 4

. \

Feedback
“Old task” r \
/:‘\

A

Labelled __, Mode| —s Online

Data
.




%g _ 3layers, 50
Exam P le ?}a:& ~ neurons each

Task 1 Task 2

This is “0”.

BB OB B w oo
BB BB . oo

1.00
0.95
0.90
0.85
0.80
0.75

Task 1 Task 2



Learning .%E

Task1l 7 ;‘%
1.00 w.dll .
0.95
0.90 90%
0.85
0.80
0.75
Task 1
Learning
Task 1
Learning
Task 2

—— 7*

Task 2

1.00
0.95
0.90
0.85
0.80
0.75

B | earning
Task 2
1.00 A 01 . 97%
0.95
0.90
Forget!!!
0.85 >
0.75
Task 1 Task 2
98%
89% I
Task 1 Task 2

The network has enough capacity to learn both tasks.



Example

* QA: Given a document, answer the question based
on the document.

* There are 20 QA tasks in bAbi corpus.

Task 5: Three Argument Relations Task 15: Basic Deduction
Mary gave the cake to Fred. Sheep are afraid of wolves.
Fred gave the cake to Bill. Cats are afraid of dogs.
Jeff was given the milk by Bill. Mice are afraid of cats.
Who gave the cake to Fred? A: Mary Gertrude is a sheep.
Who did Fred give the cake to? A: Bill What is Gertrude afraid of? A:wolves

* Train a QA model through the 20 tasks




Exa m p | e Task 5: Three Argument Relations

Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.
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Example
Task 5 Accuracy
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Not because machine are not able to do it, but it just didn't do it.
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Catastrophic
Forgetting



Walit a minute
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* Multi-task training can solve the problem!

Using all the data for training Computation issue
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Always keep the data

* Multi-task training can be considered as the upper

bound of LLL.



Wait a minute ......

* Train a model for each task

. &

Learning Learning Learning
Task 1 Task 2 Task 3

» Eventually we cannot store all the models ...

» Knowledge cannot transfer across different tasks



Life-Long v.s. Transfer

| can do task 2 because |

Transfer Learning: have learned task 1

@& fine-tune - (We don’t care whether
“‘ = ‘ machine can still do task 1.)
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, _ Eventhough | have learned
Lite-long Learning: {35k 2. | do not forget task 1.



Evaluation

First of all, we need a sequence of tasks.

https://arxiv.org/pdf/1904.07734.pdf
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Evaluation

R; ;: after training
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Research Directions

RERHY oJ 2B 4 Regularization-

: : " based Approach
Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply




Why Catastrophic Forgetting?

Task 1 Task 2

The error surfaces of tasks 1 & 2.
(darker = smaller loss)



Selective Synaptic Plasticity

Basic Idea: Some parameters in the model are important to
the previous tasks. Only change the unimportant parameters.

0" is the model learned from the previous tasks.

Each parameter Hl-b has a “guard” b;

How important
Loss for current task this parameter is

Loss to be Parameters to be Parameters learned
optimized learning from previous task



Selective Synaptic Plasticity

Basic Idea: Some parameters in the model are important to
the previous tasks. Only change the unimportant parameters.

0" is the model learned from the previous tasks.

Each parameter Hl-b has a “guard” b;

0 should be close to @? in certain directions.

L'(@) =L(O) + ﬂz bi(gi — Hib)z

If b; = 0, there is no constraint on 6; mm) Catastrophic Forgetting

If b; = oo, 8; would always be equal to Hib =) |ntransigence



Selective Synaptic Plasticity
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Selective Synaptic Plasticity

Task 1 Task 2

by is small, while b, is large.
(We can modify 6, but do not change 6, .)



Selective Synaptic Plasticity
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MNIST permutation, from the original EWC paper



Selective Synaptic Plasticity

Elastic Weight Consolidation (EWC)
 https://arxiv.org/abs/1612.00796
Synaptic Intelligence (Sl)
* https://arxiv.org/abs/1703.04200

 Memory Aware Synapses (MAS)
* https://arxiv.org/abs/1711.09601

RWalk
* https://arxiv.org/abs/1801.10112

Sliced Cramer Preservation (SCP)
* https://openreview.net/forum?id=BJge3TNKwH



https://arxiv.org/abs/

Gradient Episodic Memory (GEM) 1706.08840
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Research Directions

Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply




Progressive Neural Networks

Task 2 Task 3
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https://arxiv.org/abs/1606.04671



PackNet

https://arxiv.org/abs/1711.05769
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Research Directions

Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply



Generating Data

ata
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Solve task 1

, Generate
O4 task 1 data

https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/1711.10563
https://arxiv.org/abs/1909.03329

Generating pseudo-data using generative model for previous tasks

Generate
» task 1&2 data

Training Data
for Task 2

\I/

Multi-task
Learning

LS

Solve task 2



Adding new classes

Learning without forgetting (LwF)

https://arxiv.org/abs/1606.09282

iCaRL: Incremental Classifier and

Representation Learning
https://arxiv.org/abs/1611.07725
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Three scenarios for continual learning
https://arxiv.org/abs/1904.07734



Concluding Remarks

Memory Reply

Additional Neural Resource Allocation

Selective Synaptic Plasticity




Curriculum Learning : what is the proper learning order?
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taskonomy

= task + taxonomy
(5 )
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