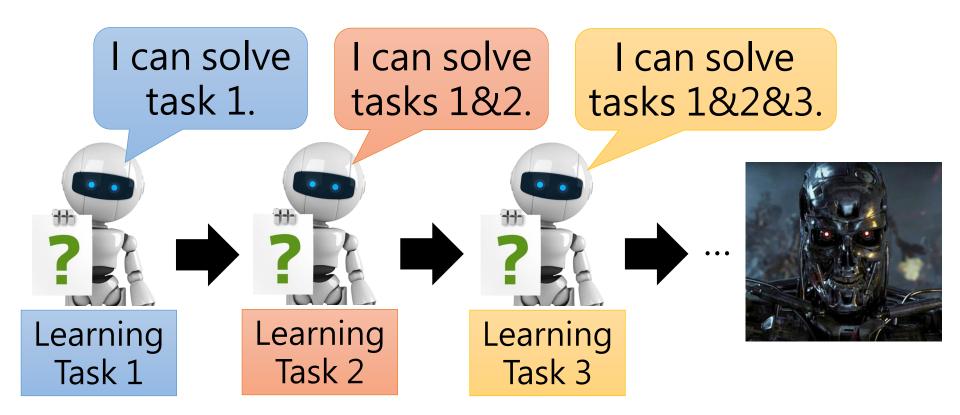


Life Long Learning Hung-yi Lee 李宏毅

Life Long Learning (終身學習)

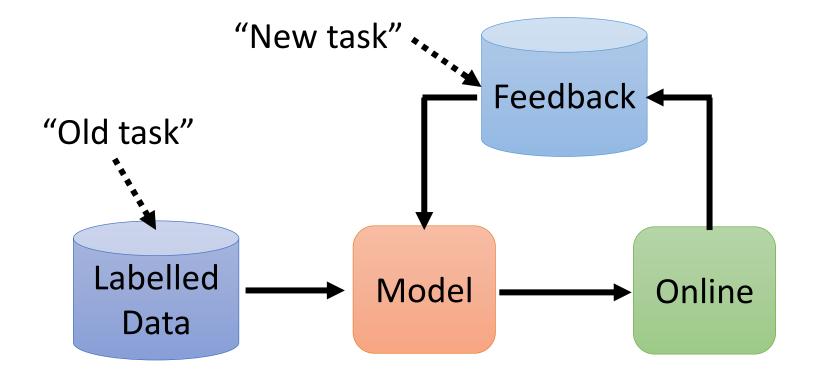
https://world.edu/lifelong-learning-part-time-undergraduate-provision-crisis/

What people think about AI ...



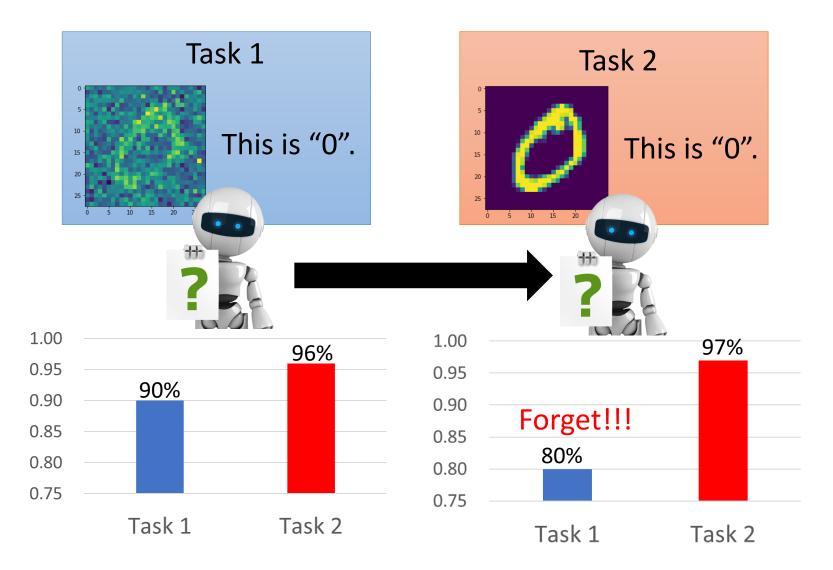
Life Long Learning (LLL), Continuous Learning, Never Ending Learning, Incremental Learning

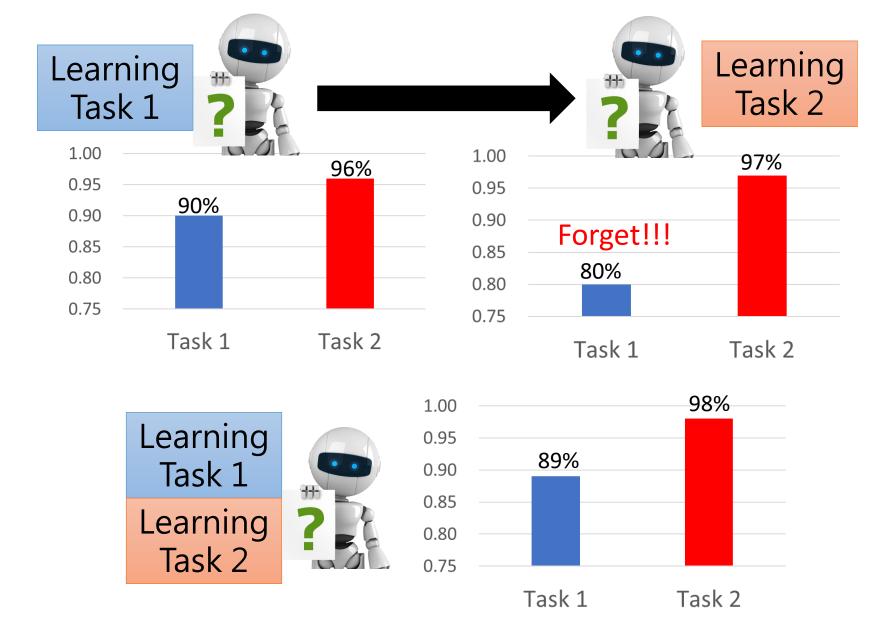
Life Long Learning in real-world applications



3 layers, 50 neurons each

Example





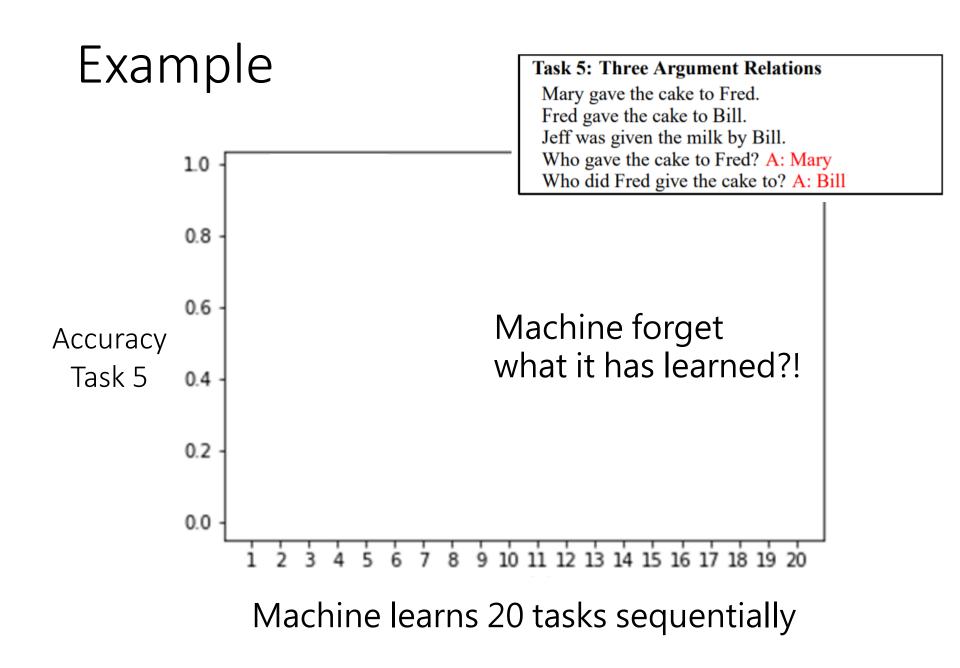
The network has enough capacity to learn both tasks.

Example

- QA: Given a document, answer the question based on the document.
- There are 20 QA tasks in bAbi corpus.

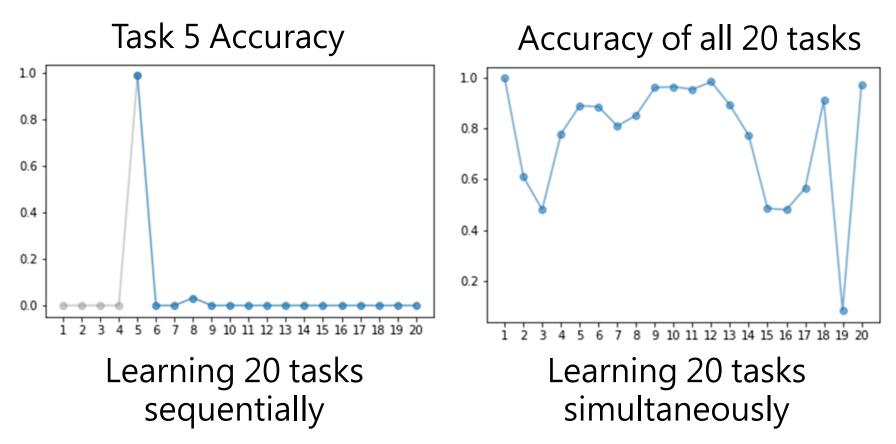
Task 5: Three Argument Relations	Task 15: Basic Deduction
Mary gave the cake to Fred.	Sheep are afraid of wolves.
Fred gave the cake to Bill.	Cats are afraid of dogs.
Jeff was given the milk by Bill.	Mice are afraid of cats.
Who gave the cake to Fred? A: Mary	Gertrude is a sheep.
Who did Fred give the cake to? A: Bill	What is Gertrude afraid of? A:wolves

• Train a QA model through the 20 tasks



感謝何振豪同學提供實驗結果

Example

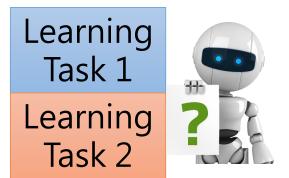


Not because machine are not able to do it, but it just didn't do it.

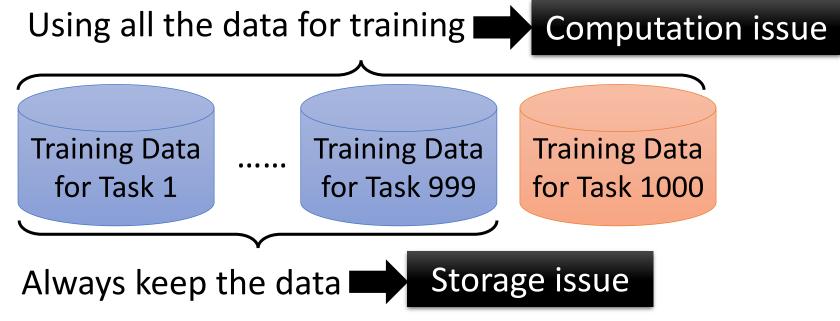
是不為也 非不能也

Catastrophic Forgetting

Wait a minute



• Multi-task training can solve the problem!



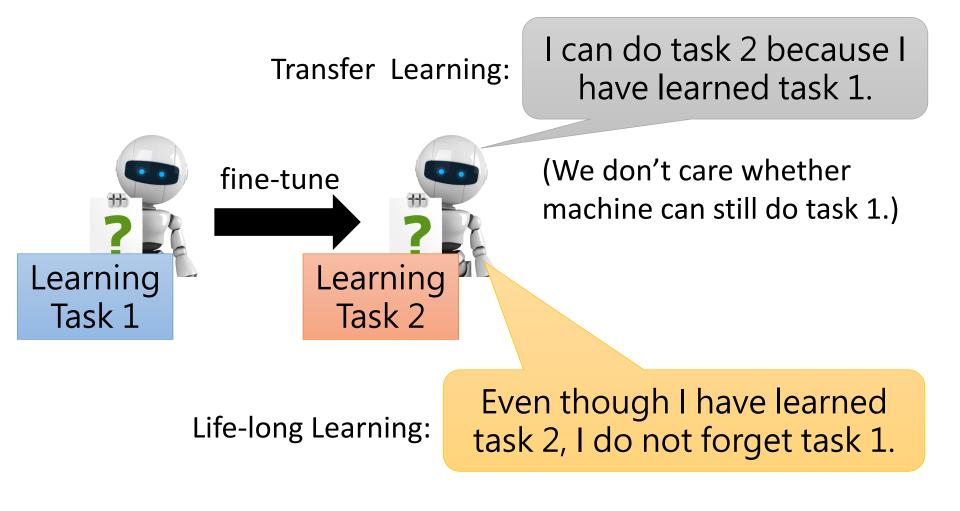
 Multi-task training can be considered as the upper bound of LLL.

Wait a minute

Train a model for each task

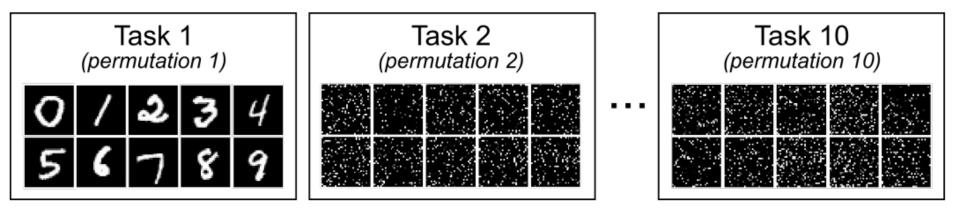
- Eventually we cannot store all the models ...
- Knowledge cannot transfer across different tasks

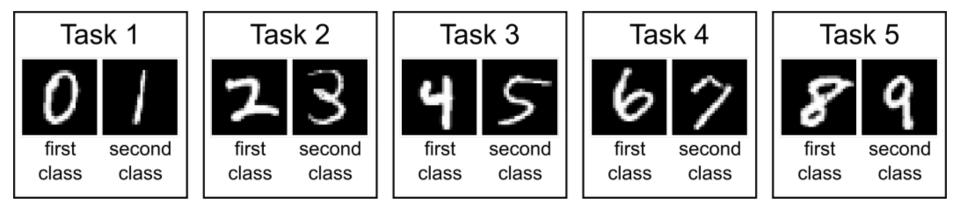
Life-Long v.s. Transfer



Evaluation

First of all, we need a sequence of tasks.





Evaluation

R_{i,j}: after training task i, performance on task j

If i > j,

After training task i, does task j be forgot

If i < j,

Can we transfer the skill of task i to task j

		Test on				
		Task 1	Task 2	••••	Task T	
Rand Init.		$R_{0,1}$	<i>R</i> _{0,2}		$R_{0,T}$	
After Training	Task 1	<i>R</i> _{1,1}	<i>R</i> _{1,2}		<i>R</i> _{1,<i>T</i>}	
	Task 2	F _{,1}	<i>R</i> _{2.2}		<i>R</i> _{2,<i>T</i>}	
	:					
	Task T-1	R ₇ .1,1	R_T 1,2		$R_{T-1,T}$	
A	Task T	$R_{T.1}$	$R_{T.2}$		$R_{T,T}$	

Accuracy =
$$\frac{1}{T} \sum_{i=1}^{T} R_{T,i}$$

Backward Transfer =
$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$$

(It is usually negative.)

Evaluation

R_{i,j}: after training task i, performance on task j

If i > j,

After training task i, does task j be forgot

If i < j,

Can we transfer the skill of task i to task j

		Test on				
		Task 1	Task 2	•••	Task T	
Rand Init.		<i>R</i> _{0,1}	<i>R</i> _{0,2}		$R_{0,T}$	
After Training	Task 1	<i>R</i> _{1,1}	<i>R</i> _{1,2}		RT	
	Task 2	<i>R</i> _{2,1}	<i>R</i> _{2,2}		R _T	
	:					
	Task T-1	$R_{T-1,1}$	$R_{T-1,2}$		$R_{T-1,T}$	
	Task T	$R_{T,1}$	<i>R</i> _{<i>T</i>,2}		$R_{T,T}$	

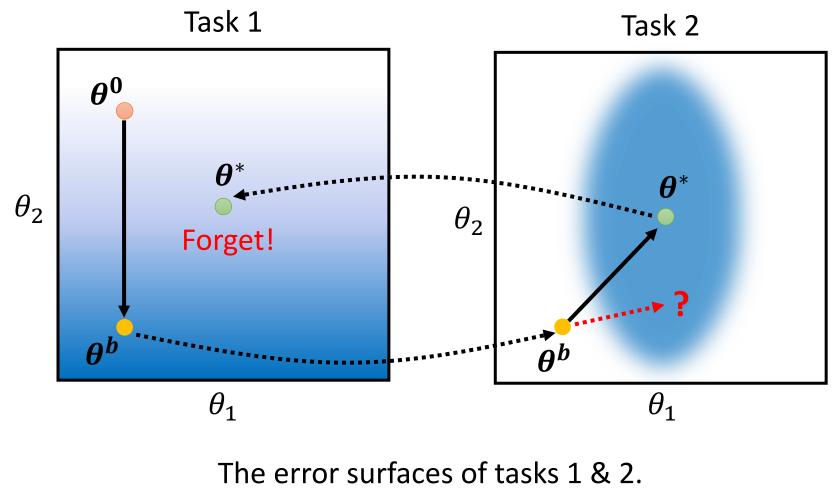
Accuracy =
$$\frac{1}{T} \sum_{i=1}^{T} R_{T,i}$$

Backward Transfer =
$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$$

Forward Transfer =
$$\frac{1}{T-1}\sum_{i=2}^{T} R_{i-1,i} - R_{0,i}$$

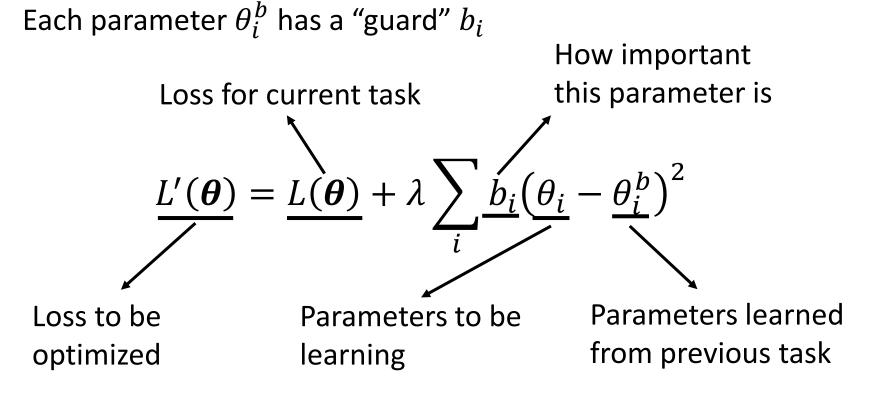
Research Directions

Why Catastrophic Forgetting?



(darker = smaller loss)

Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters. θ^{b} is the model learned from the previous tasks.

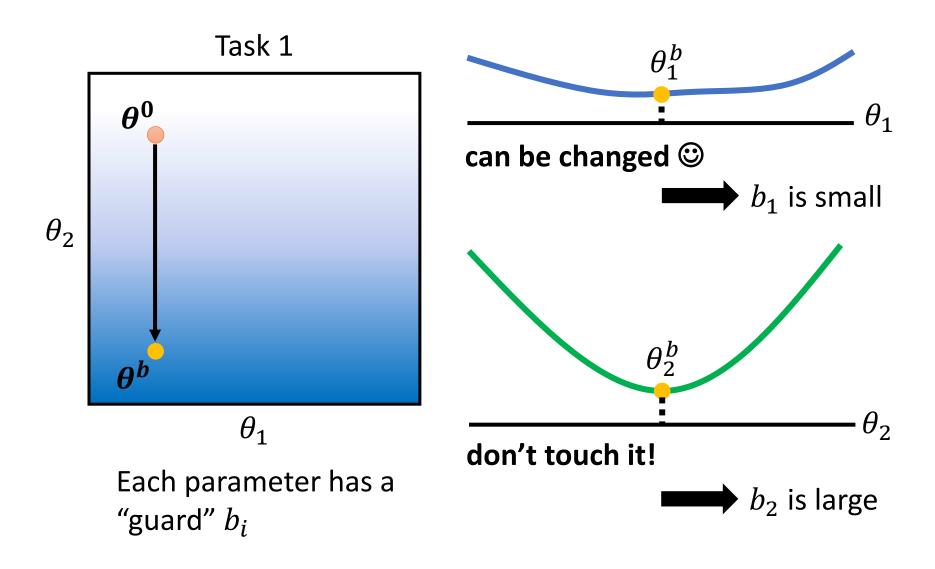


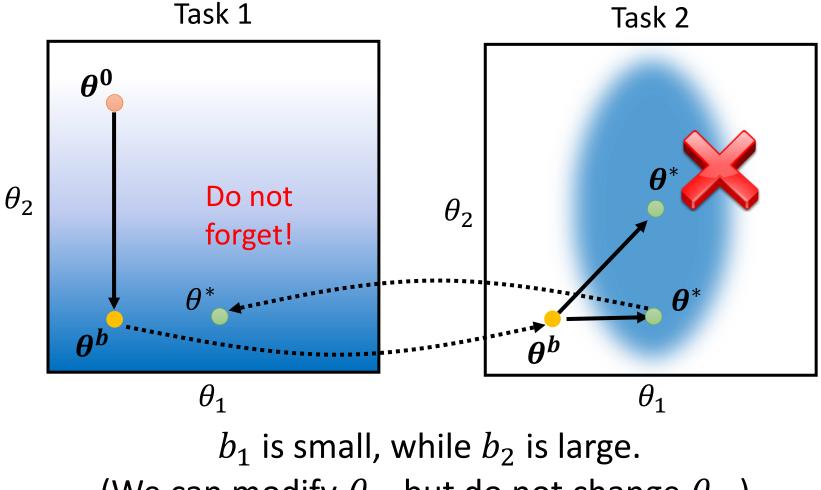
Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters. θ^b is the model learned from the previous tasks. Each parameter θ_i^b has a "guard" b_i

 $\boldsymbol{\theta}$ should be close to $\boldsymbol{\theta}^{\boldsymbol{b}}$ in certain directions.

$$L'(\boldsymbol{\theta}) = L(\boldsymbol{\theta}) + \lambda \sum_{i} b_i (\theta_i - \theta_i^b)^2$$

If $b_i = 0$, there is no constraint on θ_i \longrightarrow Catastrophic Forgetting If $b_i = \infty$, θ_i would always be equal to $\theta_i^b \longrightarrow$ Intransigence



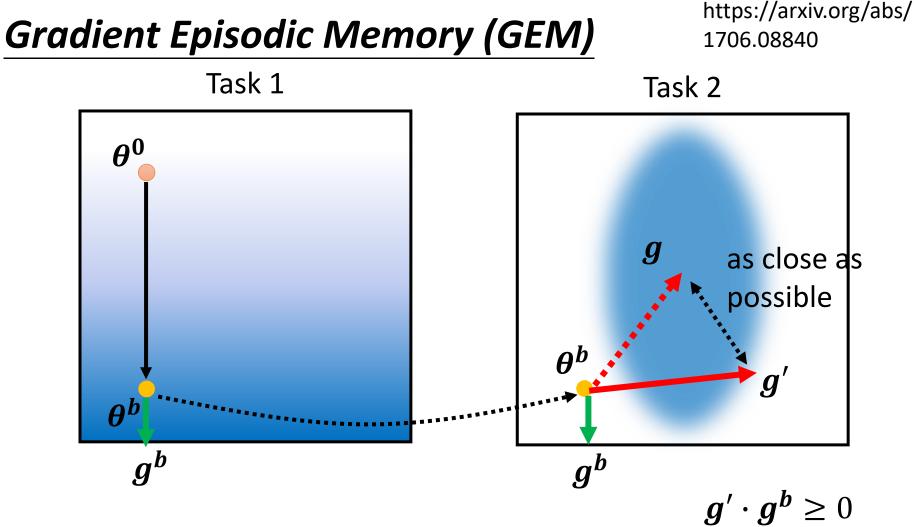


(We can modify θ_1 , but do not change θ_2 .)

Selective Synaptic Plasticity b_i represents importance train A train C train B 1.0 **EWC** Task A -2 b_i = 1 SGD $b_i = 0$ 0.8 1.0 Task B 0.8 Intransigence 러 1.0 Task C 0.8 Training time

MNIST permutation, from the original EWC paper

- Elastic Weight Consolidation (EWC)
 - https://arxiv.org/abs/1612.00796
- Synaptic Intelligence (SI)
 - https://arxiv.org/abs/1703.04200
- Memory Aware Synapses (MAS)
 - https://arxiv.org/abs/1711.09601
- RWalk
 - https://arxiv.org/abs/1801.10112
- Sliced Cramer Preservation (SCP)
 - https://openreview.net/forum?id=BJge3TNKwH



- ••• : negative gradient of current task
 - : negative gradient of previous task
 - : update direction

Need the data from the previous tasks

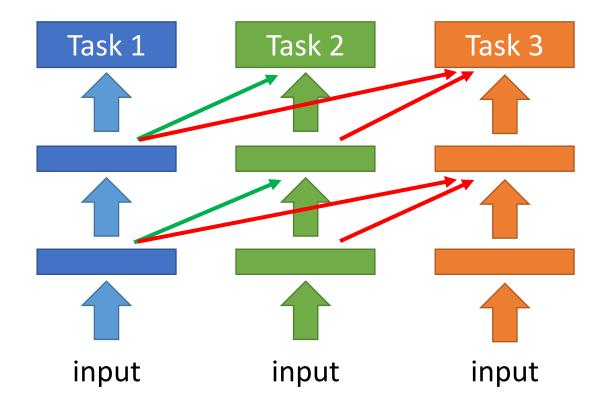
Research Directions

Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply

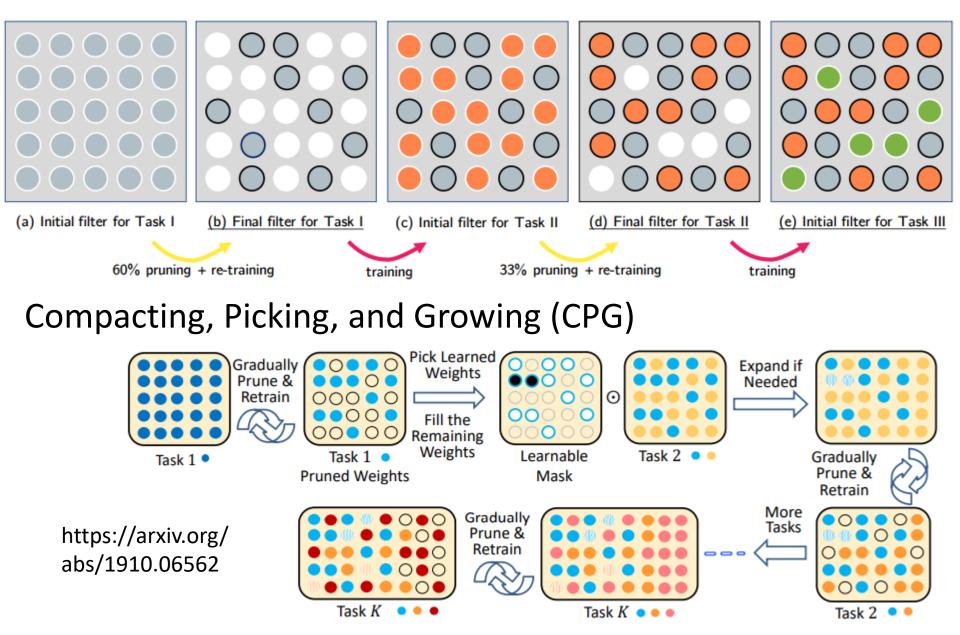
Progressive Neural Networks



https://arxiv.org/abs/1606.04671

PackNet

https://arxiv.org/abs/1711.05769



Research Directions

Selective Synaptic Plasticity

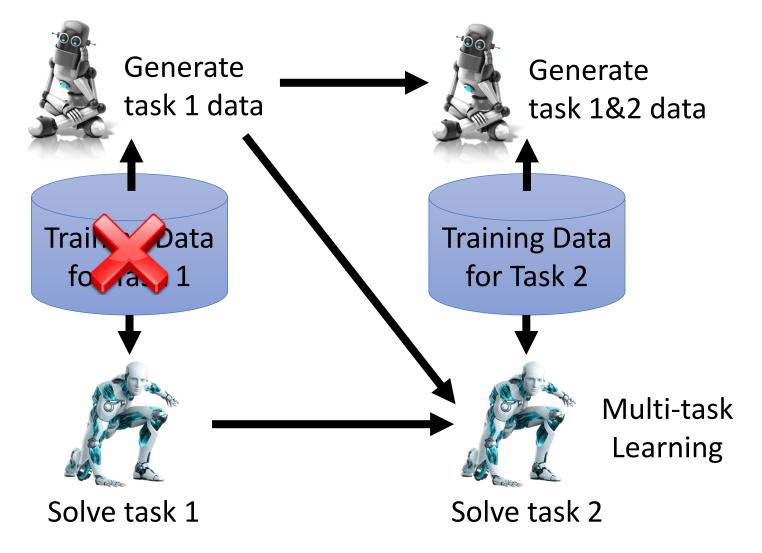
Additional Neural Resource Allocation

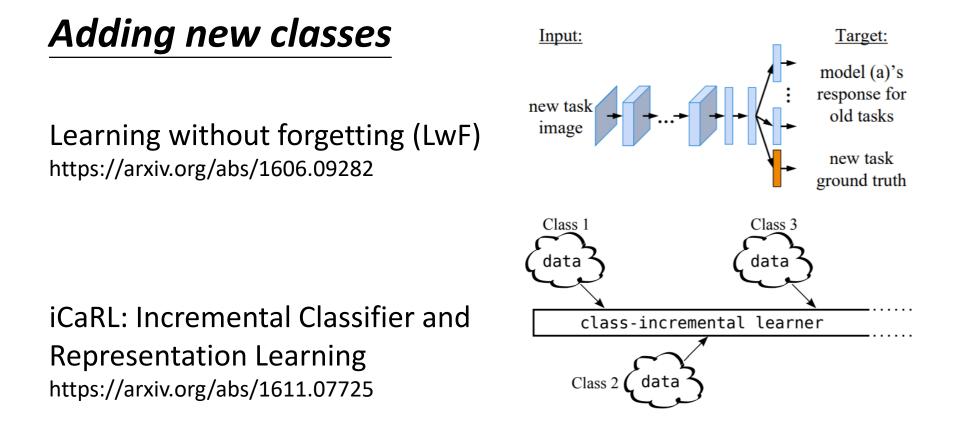
Memory Reply

Generating Data

https://arxiv.org/abs/1705.08690 https://arxiv.org/abs/1711.10563 https://arxiv.org/abs/1909.03329

• Generating pseudo-data using generative model for previous tasks





Three scenarios for continual learning

https://arxiv.org/abs/1904.07734

Concluding Remarks

Memory Reply

Additional Neural Resource Allocation

Selective Synaptic Plasticity

Curriculum Learning : what is the proper learning order?

