word = modifier_ob. mirror object to mirror mirror_mod.mirror_object Operation == "MIRROR_X": **irror_mod.use_x** = True irror_mod.use_y = False irror_mod.use_z = False **operation** == "MIRROR_Y" irror_mod.use_x = False irror_mod.use_y = True mod.use_z = False _operation == "MIRROR_Z" lrror_mod.use_x = False irror_mod.use_y = False rror_mod.use_z = True

election at the end -add ob.select= 1 er ob.select=1 eneral Guidance Ge

ata.objects[one.name].se

Int("please select exactly Hung-yi Lee 李宏毅

vpes.Operator): X mirror to the select ject.mirror_mirror_x"

ext.active_object is not context):

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Testing data: $\{x^{N+1}, x^{N+2}, ..., x^{N+M}\}$

Framework of ML

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$ Training:

Testing data: $\{x^{N+1}, x^{N+2}, ..., x^{N+M}\}$ Use $y = f_{\theta^*}(x)$ to label the testing data $\{y^{N+1}, y^{N+2}, ..., y^{N+M}\}$ Upload to Kaggle

Model Bias

find a needle in a haystack ...

... but there is no needle

Solution: redesign your model to make it more flexible

Optimization Issue

• Large loss not always imply model bias. There is another possibility ...

Model Bias

find a needle in a haystack ...

... but there is no needle

Which one???

Optimization Issue

A needle is in a haystack ...

... Just cannot find it.

Ref: http://arxiv.org/abs/1512.03385

Model Bias v.s. Optimization Issue

Gaining the insights from comparison

Optimization Issue

- Gaining the insights from comparison
- Start from shallower networks (or other models), which are easier to optimize.
- If deeper networks do not obtain smaller loss on **training data**, then there is optimization issue.

	1 layer	2 layer	3 layer	4 layer	5 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k	0.34k

 Solution: More powerful optimization technology (next lecture)

Overfitting

• Small loss on training data, large loss on testing data. Why?

An extreme example

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

$$f(\mathbf{x}) = \begin{cases} \hat{y}^i & \exists \mathbf{x}^i = \mathbf{x} \\ random & otherwise \end{cases}$$
 Less than useless ...

This function obtains zero training loss, but large testing loss.

Data augmentation (you can do that in HWs)

- Real data distribution (not observable)
 - Training data
 - Testing data

Fully-connected

CNN

- Less parameters, sharing parameters
- Less features
- Early stopping
- Regularization
- Dropout

Bias-Complexity Trade-off

The extreme example again

It is possible that $f_{56789}(x)$ happens to get good performance on public testing set.

So you select $f_{56789}(x)$ Random on private testing set

Cross Validation

How to split?

Using the results of public testing data to select your model You are making public set better than private set. Not recommend

 \rightarrow mse > 0.5

N-fold Cross Validation

Let's predict no. of views of 2/26!

Mismatch

 Your training and testing data have different distributions. Be aware of how data is generated.

Most HWs do not have this problem, except HW11

Training Data

Simply increasing the training data will not help.

Testing Data

