Hung-yi Lee

1

Sophisticated Input

• Input is a vector

• Input is a set of vectors

this

is a

cat

To learn more: https://youtu.be/X7PH3NuYW0Q (in Mandarin)

Vector Set as Input

https://medium.com/analytics-vidhya/socialnetwork-analytics-f082f4e21b16

Vector Set as Input

 Graph is also a set of vectors (consider each node as a vector)

http://www.twword.com/wiki/%E5%8 8%86%E5%AD%90

Vector Set as Input

 Graph is also a set of vectors (consider each node as a vector)

 $H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \dots \end{bmatrix}$ $C = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \dots \end{bmatrix}$ $O = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & \dots \end{bmatrix}$

What is the output?

• Each vector has a label.

Example Applications

What is the output?

• Each vector has a label.

• The whole sequence has a label.

What is the output?

• Each vector has a label.

focus of this lecture

seq2seq

• The whole sequence has a label.

Model decides the number of labels itself.

Sequence Labeling

Is it possible to consider the context?

FC Fullyconnected How to consider the whole sequence? a window covers the whole sequence?

Find the relevant vectors in a sequence

$\begin{array}{l} \underline{\textit{Self-attention}}\\ \text{on attention scores} \end{array} \quad \begin{array}{l} b^1 = \sum \alpha'_{1,i} v^i \end{array}$

18

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Positional Encoding

- No position information in self-attention.
- Each position has a unique positional vector eⁱ
- hand-crafted
- learned from data

Each column represents a positional vector e^i

29

Methods Inductive Data-Driven Parameter Efficient https://arxiv.org/abs/ Sinusoidal (Vaswani et al., 2017) X 1 2003.09229 Embedding (Devlin et al., 2018) х Relative (Shaw et al., 2018) х This paper ✓ (a) Sinusoidal (b) Position embedding i = 1i = 1Position Position i = 252i = 252Feature dimension Feature dimension i = 1i = 1Position Position i = 252i = 252Feature dimension Feature dimension 30

Table 1. Comparing position representation methods

(c) FLOATER

(d) RNN

Many applications ...

Transformer

https://arxiv.org/abs/1706.03762

BERT

https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)! 31

https://arxiv.org/abs/1910.12977

Self-attention for Speech

If input sequence is length L

Attention in a range

Self-attention for Image

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-RGB-matrix_fig15_282798184

DEtection Transformer (DETR)

https://arxiv.org/abs/2005.12872

Self-attention v.s. CNN

CNN: self-attention that can only attends in a receptive field

> CNN is simplified self-attention.

Self-attention: CNN with learnable receptive field

Self-attention is the complex version of CNN.

Self-attention v.s. CNN

On the Relationship between Self-Attention and Convolutional Layers https://arxiv.org/abs/1911.03584

Self-attention v.s. CNN

Good for more data

Self-attention

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/pdf/2010.11929,pdf

Attention

https://arxiv.org/abs/2006.16236

To learn more about RNN

https://youtu.be/xCGidAeyS4M

(in Mandarin)

https://youtu.be/Jjy6ER0bHv8 (in English)

Self-attention for Graph

Consider **edge**: only attention to connected nodes

Self-attention for Graph

• To learn more about GNN ...

https://youtu.be/eybCCtNKwzA (in Mandarin)

https://youtu.be/M9ht8vsVEw8 (in Mandarin)

To Learn More ...

Long Range Arena: A Benchmark for Efficient Transformers https://arxiv.org/abs/2011.04006

Efficient Transformers: A Survey https://arxiv.org/abs/2009.06732

