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Warning of Math



Tayler Series Approximation 

𝐿 𝜽 ≈ 𝐿 𝜽′ + 𝜽 − 𝜽′ 𝑇𝒈 +
1

2
𝜽 − 𝜽′ 𝑇𝐻 𝜽 − 𝜽′

Gradient 𝒈 is a vector

Hessian 𝐻 is a matrix

𝒈𝑖 =
𝜕𝐿 𝜽′

𝜕𝜽𝑖

𝐻𝑖𝑗 =
𝜕2

𝜕𝜽𝑖𝜕𝜽𝑗
𝐿 𝜽′

𝒈 = 𝛻𝐿 𝜽′

𝐿 𝜽 around 𝜽 = 𝜽′ can be approximated below

𝜽′

𝜽

𝐿 𝜽



Hessian

Source of image:http://www.offconvex.org/2016/03/22/saddlepoints/

telling the properties of critical points

𝐿 𝜽 ≈ 𝐿 𝜽′ + 𝜽 − 𝜽′ 𝑇𝒈 +
1

2
𝜽 − 𝜽′ 𝑇𝐻 𝜽 − 𝜽′

𝐿 𝜽 around 𝜽 = 𝜽′ can be approximated below

At critical point



Hessian
At critical point:

𝐻 is positive definite

𝒗𝑇𝐻𝒗 > 0 Local minimaAround 𝜽′: 𝐿 𝜽 > 𝐿 𝜽′

All eigen values are positive.

𝒗𝑇𝐻𝒗 < 0 Local maxima

Sometimes 𝒗𝑇𝐻𝒗 > 0, sometimes 𝒗𝑇𝐻𝒗 < 0 Saddle point

𝒗𝑇𝐻𝒗

𝐿 𝜽 ≈ 𝐿 𝜽′ +
1

2
𝜽 − 𝜽′ 𝑇𝐻 𝜽 − 𝜽′

Around 𝜽′: 𝐿 𝜽 < 𝐿 𝜽′

= =

𝐻 is negative definite All eigen values are negative.= =

Some eigen values are positive, and some are negative.

For all 𝒗

For all 𝒗



𝑤1 𝑤2
𝑥 𝑦 ො𝑦
= 1 = 1

𝑦 = 𝑤1𝑤2𝑥Example

𝑤1

𝑤2

Error Surface

saddle

minima

minima



𝐿 = ො𝑦 − 𝑤1𝑤2𝑥
2

𝜕𝐿

𝜕𝑤1
= 2 1 − 𝑤1𝑤2 −𝑤2

𝜕𝐿

𝜕𝑤2
= 2 1 − 𝑤1𝑤2 −𝑤1

𝜕2𝐿

𝜕𝑤1
2
= 2 −𝑤2 −𝑤2

𝜕2𝐿

𝜕𝑤2
2
= 2 −𝑤1 −𝑤1

𝜕2𝐿

𝜕𝑤1𝜕𝑤2
= −2 + 4𝑤1𝑤2

𝜕2𝐿

𝜕𝑤2𝜕𝑤1
= −2 + 4𝑤1𝑤2

𝑤1 𝑤2
𝑥 𝑦 ො𝑦
= 1 = 1

= 1 − 𝑤1𝑤2
2

𝑤1 = 0,𝑤2 = 0Critical point:

𝐻 =
0 −2
−2 0

𝜆1 = 2, 𝜆2 = −2

Saddle point

= 0

= 0

= 0

= 0= −2

= −2

𝒈

𝐻



𝐿 𝜽 ≈ 𝐿 𝜽′ +
1

2
𝜽 − 𝜽′ 𝑇𝐻 𝜽 − 𝜽′

Sometimes 𝒗𝑇𝐻𝒗 > 0, sometimes 𝒗𝑇𝐻𝒗 < 0 Saddle point

𝒖 is an eigen vector of 𝐻
𝒖𝑇𝐻𝒖 = 𝒖𝑇 𝜆𝒖 = 𝜆 𝒖 2

𝜆 is the eigen value of 𝒖

𝐻 may tell us parameter update direction!

𝜆 < 0
< 0< 0

At critical point:

𝒗𝑇𝐻𝒗
Don’t afraid of saddle point? 

𝒖 𝒖
𝐿 𝜽 < 𝐿 𝜽′

𝜽 = 𝜽′ + 𝒖 Decrease 𝐿

𝐿 𝜽 ≈ 𝐿 𝜽′ +
1

2
𝜽 − 𝜽′ 𝑇𝐻 𝜽 − 𝜽′

𝜽 − 𝜽′ = 𝒖



𝐿 = ො𝑦 − 𝑤1𝑤2𝑥
2

𝜕𝐿

𝜕𝑤1
= 2 1 − 𝑤1𝑤2 −𝑤2

𝜕𝐿

𝜕𝑤2
= 2 1 − 𝑤1𝑤2 −𝑤1

𝑤1 𝑤2
𝑥 𝑦 ො𝑦
= 1 = 1

= 1 − 𝑤1𝑤2
2

𝑤1 = 0,𝑤2 = 0Critical point:

𝐻 =
0 −2
−2 0

𝜆1 = 2, 𝜆2 = −2

Saddle point

Has eigenvector 𝒖 =
1
1

𝜆2 = −2

You can escape the saddle point and decrease the loss.

Update the parameter along the direction of 𝒖

(this method is seldom used in practice)



End of Warning



Saddle Point v.s. Local Minima 

• A.D. 1543



Saddle Point v.s. Local Minima 

• The Magician Diorena (魔法師狄奧倫娜)

來源《三體Ⅲ·死神永生》

Source of image: https://read01.com/mz2DBPE.html#.YECz22gzbIU

From 3 dimensional 
space, it is sealed.

It is not in higher 
dimensions.



Saddle Point v.s. Local Minima 

When you have lots of parameters, perhaps local minima is rare?

Source of image: https://arxiv.org/abs/1712.09913

Saddle point in 
higher dimension?



Empirical Study 

Training 
Loss

Minimum Ratio

Train a network once, until it 
converges to critical point.

Minimum ratio =
Number of Eigen values

Number of Positive Eigen values

never reach a real 
“local minima”

More “like” local minima 

Source:https://docs.google.com/presentation/d/1siUFXARYRpNiMeSRwgFbt7mZVjkMPhR5od09w0Z8xaU/edit#slide=id.g3
1470fd33a_0_33



Small Gradient …

Loss

The value of a network parameter w

Very slow at the 
plateau

Stuck at local minima

𝜕𝐿 ∕ 𝜕𝑤
= 0

Stuck at saddle point

𝜕𝐿 ∕ 𝜕𝑤
= 0

𝜕𝐿 ∕ 𝜕𝑤
≈ 0

Gradient Descent



Tips for training: 
Batch and Momentum



Batch



Review: Optimization with Batch

𝜽∗ = 𝑎𝑟𝑔min
𝜽

𝐿

➢ (Randomly) Pick initial values 𝜽0

➢ Compute gradient 𝒈𝟎 = ∇𝐿1 𝜽0

𝜽1 ← 𝜽0 − 𝜂𝒈𝟎

➢ Compute gradient 𝒈𝟏 = ∇𝐿2 𝜽1

𝜽2 ← 𝜽1 − 𝜂𝒈𝟏

➢ Compute gradient 𝒈𝟑 = ∇𝐿3 𝜽2

𝜽3 ← 𝜽2 − 𝜂𝒈𝟑

N

B batch

batch

batch

batch

1 epoch = see all the batches once

𝐿1

𝐿2

𝐿3

𝐿

update

update

update

Shuffle after each epoch



Small Batch v.s. Large Batch

Batch size = N (Full batch)

See all 
examples

See all 
examples

See only one 
example

Update after seeing all 
the 20 examples Update 20 times in an epoch

Update for each example

Consider 20 examples (N=20)

Batch size = 1

Long time for cooldown, 
but powerful

Short time for cooldown, 
but noisy



Small Batch v.s. Large Batch

• Larger batch size does not require longer time to 
compute gradient 

Tesla V100 GPU

Parallel computing 

Having limitation

(unless batch size is too large)

oldest slides: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20(v4).pdf
old slides: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/Keras.pdf

full

MNIST: digit 
classification

Time for 
each update



Small Batch v.s. Large Batch

• Smaller batch requires longer time for one epoch 
(longer time for seeing all data once)

Time for one update Time for one epoch

60000 updates in one epoch

60 updates

slower

faster



Small Batch v.s. Large Batch

Batch size = N (Full Batch)

See all 
examples

See all 
examples

See only one 
example

Update after seeing all 
the 20 examples Update 20 times in an epoch

Update for each example

Consider 20 examples (N=20)

Batch size = 1

Long time for cooldown, 
but powerful

Short time for cooldown, 
but noisy



Small Batch v.s. Large Batch

MNIST CIFAR-10

➢ Smaller batch size has better performance  

➢What’s wrong with large batch size? Optimization Fails



• Smaller batch size has better performance  

• “Noisy” update is better for training

Small Batch v.s. Large Batch

𝐿

𝐿1

𝐿2

stuck

stuck

trainable

Full Batch Small Batch



Small Batch v.s. Large Batch

• Small batch is better on testing data?

https://arxiv.org/abs/1609.04836

SB = 256

LB = 
0.1 x data set

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima



Small Batch v.s. Large Batch

• Small batch is better on testing data?

Flat Minima Sharp Minima

Training Loss

Testing Loss

good for testing

bad for testing

https://arxiv.org/abs/1609.04836

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

large batch

small batch



Small Batch v.s. Large Batch

Small Large

Speed for one update 
(no parallel)

Faster Slower

Speed for one update 
(with parallel)

Same Same (not too large)

Time for one epoch Slower Faster

Gradient Noisy Stable

Optimization Better Worse

Generalization Better Worse

Batch size is a hyperparameter you have to decide.



Have both fish and bear's paws?

• Large Batch Optimization for Deep Learning: Training BERT 
in 76 minutes (https://arxiv.org/abs/1904.00962)

• Extremely Large Minibatch SGD: Training ResNet-50 on 
ImageNet in 15 Minutes (https://arxiv.org/abs/1711.04325)

• Stochastic Weight Averaging in Parallel: Large-Batch Training 
That Generalizes Well (https://arxiv.org/abs/2001.02312)

• Large Batch Training of Convolutional Networks 
(https://arxiv.org/abs/1708.03888)

• Accurate, large minibatch sgd: Training imagenet in 1 hour 
(https://arxiv.org/abs/1706.02677)



Momentum



Small Gradient …

Loss

The value of a network parameter w

Consider the physical world …

How about put this phenomenon 
in gradient descent?



(Vanilla) Gradient Descent

Starting at 𝜽𝟎

Compute gradient 𝒈𝟎

Move to 𝜽𝟏 = 𝜽𝟎 − 𝜂𝒈𝟎

Compute gradient 𝒈𝟏

Move to 𝜽𝟐 = 𝜽𝟏 − 𝜂𝒈𝟏
Movement

Gradient

…
…

𝜽𝟎

𝜽𝟏

𝜽𝟐

𝜽𝟑

𝒈𝟎

𝒈𝟏

𝒈𝟐

𝒈𝟑



Gradient Descent + Momentum
Starting at 𝜽𝟎

Compute gradient 𝒈𝟎

Move to 𝜽𝟏 = 𝜽𝟎 +𝒎𝟏

Compute gradient 𝒈𝟏

Movement 𝒎𝟎 = 𝟎

Movement 𝒎𝟏 = λ𝒎𝟎 − 𝜂𝒈𝟎

Movement 𝒎𝟐 = λ𝒎𝟏 − 𝜂𝒈𝟏

Move to 𝜽𝟐 = 𝜽𝟏 +𝒎𝟐
Movement

Gradient

𝜽𝟎

𝜽𝟏

𝜽𝟐

𝜽𝟑

𝒈𝟎
𝒈𝟏

𝒈𝟐

𝒈𝟑 Movement not just based 
on gradient, but previous 
movement.

Movement
of the last step

Movement: movement of last 
step minus gradient at present 

𝒎𝟏

𝒎𝟐

𝒎𝟑



Gradient Descent + Momentum

𝒎𝒊 is the weighted sum of all the 
previous gradient: 𝒈𝟎, 𝒈𝟏, …, 𝒈𝒊−𝟏

𝒎𝟎 = 𝟎

𝒎𝟏 = −𝜂𝒈𝟎

𝒎𝟐 =−λ𝜂𝒈𝟎 − 𝜂𝒈𝟏

…
…

Movement: movement of last 
step minus gradient at present 

Starting at 𝜽𝟎

Compute gradient 𝒈𝟎

Move to 𝜽𝟏 = 𝜽𝟎 +𝒎𝟏

Compute gradient 𝒈𝟏

Movement 𝒎𝟎 = 𝟎

Movement 𝒎𝟏 = λ𝒎𝟎 − 𝜂𝒈𝟎

Movement 𝒎𝟐 = λ𝒎𝟏 − 𝜂𝒈𝟏

Move to 𝜽𝟐 = 𝜽𝟏 +𝒎𝟐

Movement not just based 
on gradient, but previous 
movement.



Movement = 
Negative of 𝜕𝐿∕𝜕𝑤 + Last Movement 

Gradient Descent + Momentum

loss

𝜕𝐿∕𝜕𝑤 = 0

Negative of 𝜕𝐿 ∕ 𝜕𝑤

Last Movement

Real Movement



Concluding Remarks 

• Critical points have zero gradients. 

• Critical points can be either saddle points or local 
minima.

• Can be determined by the Hessian matrix.

• It is possible to escape saddle points along the 
direction of eigenvectors of the Hessian matrix.

• Local minima may be rare.

• Smaller batch size and momentum help escape 
critical points. 
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