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Optimization Fails because ......

local minima
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Warning of Math



Tayler Series Approximation

L(@) around @ = 0’ can be approximated below

L(8) ~ L(0") +[(9 — 9')Tg]+[§ O —0)TH(O — 9')]

Gradient g is a vector

7L(8") dL(0")
= ! g =
9 SFT}
Hessian H is a matrix
62
H L(6")

U~ 50,00,



Source of image:http://www.offconvex.org/2016/03/22/saddlepoints/

Hesslan

L(@) around @ = 0’ can be approximated below

L(0) ~ L(8") + + % 0 —0)TH(O — 0"

At critical point

telling the properties of critical points

local min local max saddle point




At critical point: v Hv

Hessian L(6) ~ L(6') +[% (6—-06)"'H(6 - 9')]

For all v
vIHvy >0 wmp Around ': L(6) > L(6') mmp Local minima
= H is positive definite = All eigen values are positive. t
Forall v

vTHvy <0 wmp Around 6': L(6) < L(6') mmp Local maxima

= H is negative definite = All eigen values are negative.t

Sometimes v Hv > 0, sometimes v/ Hv < 0 mmp Saddle point

Some eigen values are positive, and some are negative. t



Example Y = WilaX
W1 Wy ~
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Don’t afraid of saddle point?

v Hy

At critical point:  L(0) ~ L(0") +E CEX:BWACE 9')]

Sometimes vI Hv > 0, sometimes v Hv < 0 » Saddle point

H may tell us parameter update direction!

U is an eigen vector of H

A is the eigen value of u
A<0

mm) u'Hu =u’(Au) = A|u|?
<0 <0

1 u u
L(6) =~ L(0") + > (0—0)"HO—-06") mp L(6)<L(O)

0-0' =u 0=0"+u Decrease L



GG s

L=- W1W2x)2 =(1- W1W2)2
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Ay = —2 Has eigenvector u = [ﬂ
Update the parameter along the direction of u

You can escape the saddle point and decrease the loss.

(this method is seldom used in practice)



End of Warning
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AR ( ZHE I -FE KA )
Saddle Point v.s. Local Minima

« The Magician Diorena (% i F# & B i&#%)

From 3 dimensional
space, it is sealed.

It is not in higher
dimensions.

Source of image: https://read01.com/mz2DBPE.html#.YECz22gzblU



Source of image: https://arxiv.org/abs/1712.09913

Saddle Point v.s. Local Minima

Saddle pointin
higher dimension?

When you have lots of parameters, perhaps local minima is rare?



Empirical Study

0.10
=== @ =]
0.08
0.06 - More “like” local minima
—
Training
0.04 h I
L 0SS never reach a rea
“local minima”
Train a network once, until it
. . < ® K] P ame so
converges to critical point. “*n
|
0.'0 0.'1 O.'2 O.'3 O.'4 O.IS

Minimum Ratio

Number of Positive Eigen values
Minimum ratio =

Number of Eigen values

Source:https://docs.google.com/presentation/d/1siUFXARYRpNiMeSRwgFbt7mZVjkMPhR50d09w0Z8xaU/edit#slide=id.g3
1470fd33a_0_33



Small Gradient ...

Loss Gradient Descent

Very slow at the
plateau
Stuck at saddle point

Stuck at local minima

L /ow | oL /ow
i =0 i =0 : =0

The value of a network parameter w



Tips for training:
Batch and Momentum




Batch



Review: Optimization with Batch

0" =arg mgnL

B
> (Randomly) Pick initial values Q" . lAJ
i 0 1,00 1” .
» Compute gradient g” = VL' (6°) L . :
update 6! < 0° —ng° & e " N

> Compute gradient g1 = VL2(01) 2”
update 92 « g1 — 5g?! K
> Compute gradient 7~ = V/. (0?) o

update 63 « 0% — 17

1 epoch = see all the batches once =p Shuffle after each epoch



Small Batch v.s. Large Batch

Consider 20 examples (N=20)

Batch size = N (Full batch) Batch size=1
Update after seeing all Update for each example
the 20 examples Update 20 times in an epoch

See all — See only one |

examples ‘ example

X

Long time for cooldown, Short time for cooldown,
R but powerful S but noisy




oldest slides: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 2015 2/Lecture/DNN%20(v4).pdf
old slides: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/Keras.pdf

Small Batch v.s. Large Batch

 Larger batch size does not require longer time to
compute gradient (unless batch size is too large)

Time for
each update

MNIST: digit 6 Having limitation

classification £ —

Parallel computing

\

Tesla V100 GPU o ° .- R

1 10 100 1000 10000 60000

batch size
full




Small Batch v.s. Large Batch

* Smaller batch requires longer time for one epoch
(longer time for seeing all data once)

Time for one update

60 updates

&
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60000 updates in one epoch
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Small Batch v.s. Large Batch

Consider 20 examples (N=20)

Batch size = N (Full Batch) Batch size =1
Update after seeing all Update for each example
the 20 examples Update 20 times in an epoch

—

See all — See only one |

examples ‘ example
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Small Batch v.s. Large Batch

MNIST

Accuracy vs. Batch Size

—8— train acc
validation acc

accuracy
o
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Accuracy vs. Batch Size
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» Smaller batch size has better performance

» What’s wrong with large batch size? Optimization Fails




Small Batch v.s. Large Batch

* Smaller batch size has better performance
* “Noisy” update is better for training

Full Batch Small Batch

trainable :



On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
https://arxiv.org/abs/1609.04836

Small Batch v.s. Large Batch

* Small batch is better on testing data?

Name | Network Type Data set
_ Fy Fully Connected MNIST (LeCun et al.. 1998a)
SB =256 Fs Fully Connected TIMIT (Garofolo et al., 1993)
C (Shallow) Convolutional | CIFAR-10 (Krizhevsky & Hinton, 2009)
LB = C5 (Deep) Convolutional CIFAR-10

0.1 x dataset ¢3

(Shallow) Convolutional
(Deep) Convolutional

Training Accuracy

SB

LB

CIFAR-100 (Krizhevsky & Hinton, 2009)

CIFAR-100

Testing Accuracy

B

LB

99.66% + 0.05%
99.99% =+ 0.03%
99.89% + 0.02%
99.99% =+ 0.04%
99.56% =+ 0.44%
99.10% + 1.23%

99.92% + 0.01%
98.35% + 2.08%
99.66% + 0.2%

99.99% + 0.01%
99.88% + 0.30%
99.57% + 1.84%

8.03% + 0.07%
64.02% + 0.2%
R0.04% + 0.12%
89.24% + 0.12%

9.58% + 0.39%
63.08% + 0.5%

97.81% + 0.07%
59.45% + 1.05%
77.26% £ 0.42%
87.26% + 0.07%
46.45% + 0.43%
57.81% + 0.17%




On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
https://arxiv.org/abs/1609.04836

Small Batch v.s. Large Batch

* Small batch is better on testing data? large batch

bad for testing

% Testing Loss

Training Loss

.
.
---------

Flat Minima Sharp Minima



Small Batch v.s. Large Batch
| smal | lage

Speed for one update

[ ——— Faster Slower
(Sv?/icf\dpl;or;ﬁgle) S[RELE Same Same (not too large)
Time for one epoch Slower Faster%
Gradient Noisy Stable
Optimization Better 4& Worse
Generalization Better W Worse

Batch size is a hyperparameter you have to decide.



Have both fish and bear's paws?

e Large Batch Optimization for Deep Learning: Training BERT
in 76 minutes (https://arxiv.org/abs/1904.00962)

* Extremely Large Minibatch SGD: Training ResNet-50 on
ImageNet in 15 Minutes (https://arxiv.org/abs/1711.04325)

* Stochastic Weight Averaging in Parallel: Large-Batch Training
That Generalizes Well (https://arxiv.org/abs/2001.02312)

* Large Batch Training of Convolutional Networks
(https://arxiv.org/abs/1708.03888)

* Accurate, large minibatch sgd: Training imagenet in 1 hour
(https://arxiv.org/abs/1706.02677)



Momentum



Small Gradient ...

Loss Consider the physical world ...

N\

How about put this phenomenon
in gradient descent?

The value of a network parameter w



(Vanilla) Gradient Descent

=P Gradient
- \OvEeMment

Starting at 9°

Compute gradient g°
Move to 81 = % — ng°
Compute gradient 91

Move to 8% = 81 —ng!



Gradient Descent + Momentum

: 0
Movement: movement of last Starting at
step minus gradient at present Movement m® = 0

Compute gradient g°
Movement m! = Am® — ng°
Move to 81 = 8% + m!

Compute gradient g1

P Gradient Movement m? = Am! — ngl

3,
——p Movement %, Move to 8 = 8" + m?
-===2: Movement g’ Movement not just based

of the last step

on gradient, but previous
movement.




Gradient Descent + Momentum

: 0
Movement: movement of last Starting at
step minus gradient at present Movement m® = 0

Compute gradient g°
m! is the weighted sum of all the ~ Movement m! =m° — 7790
previous gradient: g%, g%, .., 8" Move to 61 = 6° + ml
m® =0 Compute gradient g1

ml=—-ng° Movement m? = Am! — ng?
Move to 8% = 01 + m?

Movement not just based

on gradient, but previous
movement.




Gradient Descent + Momentum

loss Movement =
Negative of dL/dw + Last Movement

=P Negative of dL / dw
-=x=p Last Movement

- Real Movement




Concluding Remarks

* Critical points have zero gradients.
* Critical points can be either saddle points or local
minima.
* Can be determined by the Hessian matrix.

* It is possible to escape saddle points along the
direction of eigenvectors of the Hessian matrix.

* Local minima may be rare.

* Smaller batch size and momentum help escape
critical points.
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