NETWORK COMPRESSION Hung-yi Lee 李宏毅

Smaller Model

Less parameters

Deploying ML models in resourceconstrained environments

Lower latency, Privacy, etc.

Outline

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

We will not talk about hard-ware solution today.

Network Pruning

Network can be pruned

 Networks are typically over-parameterized (there is significant redundant weights or neurons)

Network Pruning

- Importance of a weight: absolute values, life long ...
- Importance of a neuron: the number of times it wasn't zero on a given data set
- After pruning, the accuracy will drop (hopefully not too much)
- Fine-tuning on training data for recover
- Don't prune too much at once, or the network won't recover.

Network Pruning - Practical Issue

Hard to implement, hard to speedup

Network Pruning - Practical Issue

Weight pruning

https://arxiv.org/pdf/1608.03665.pdf

Network Pruning - Practical Issue

Easy to implement, easy to speedup

Why Pruning?

- How about simply train a smaller network?
- It is widely known that smaller network is more difficult to learn successfully.
 - Larger network is easier to optimize? <u>https://www.youtube.com/watch?v=_VuWvQU</u> <u>MQVk</u>
- Lottery Ticket Hypothesis https://arxiv.org/abs/1803.03635

Why Pruning? Lottery Ticket Hypothesis

Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask https://arxiv.org/abs/1905.01067

Why Pruning? Lottery Ticket Hypothesis

• Different pruning strategy

• "sign-ificance" of initial weights: Keeping the sign is critical

0.9, 3.1, -9.1, 8.5
$$\rightarrow +\alpha, +\alpha, -\alpha, +\alpha$$

• Pruning weights from a network with random weights

Weight Agnostic Neural Networks https://arxiv.org/abs/1906.04358

Why Pruning?

• Rethinking the Value of Network Pruning

Dataset	Model	Unpruned	Pruned Model	Fine-tuned	Scratch-E	Scratch-B
CIFAR-10	VGG-16	93.63 (±0.16)	VGG-16-A	93.41 (±0.12)	93.62 (±0.11)	93.78 (±0.15)
	ResNet-56	93.14 (±0.12)	ResNet-56-A	92.97 (±0.17)	92.96 (±0.26)	93.09 (±0.14)
			ResNet-56-B	92.67 (±0.14)	92.54 (±0.19)	93.05 (±0.18)
	ResNet-110	93.14 (±0.24)	ResNet-110-A	93.14 (±0.16)	93.25 (±0.29)	93.22 (±0.22)
			ResNet-110-B	92.69 (±0.09)	92.89 (±0.43)	93.60 (±0.25)
ImageNet	ResNet-34	73.31	ResNet-34-A	72.56	72.77	73.03
			ResNet-34-B	72.29	72.55	72.91

- New random initialization, not original random initialization in "Lottery Ticket Hypothesis"
- Limitation of "Lottery Ticket Hypothesis" (small lr, unstructured)

Knowledge Distillation

Knowledge Distillation

Knowledge Distillation https://arxiv.org/pdf/1503.02531.pdf Do Deep Nets Really Need to be Deep? https://arxiv.org/pdf/1312.6184.pdf

Knowledge Distillation **Cross-entropy** Learning target "1":0.7, "7":0.2, "9":0.1 Ensemble

Knowledge Distillation https://arxiv.org/pdf/1503.02531.pdf Do Deep Nets Really Need to be Deep? https://arxiv.org/pdf/1312.6184.pdf

Knowledge Distillation

• Temperature for softmax

$$y'_{i} = \frac{exp(y_{i})}{\sum_{j} exp(y_{j})} \longrightarrow y'_{i} = \frac{exp(y_{i}/T)}{\sum_{j} exp(y_{j}/T)}$$

$$y_1 = 100$$
 $y'_1 = 1$ $y_1/T = 1$ $y'_1 = 0.56$ $y_2 = 10$ $y'_2 \approx 0$ $y_2/T = 0.1$ $y'_2 = 0.23$ $y_3 = 1$ $y'_3 \approx 0$ $y_3/T = 0.01$ $y'_3 = 0.21$

Parameter Quantization

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

	0.5	1.3	4.3	-0.1
weights in	0.1	-0.2	-1.2	0.3
a network	1.0	3.0	-0.4	0.1
	-0.5	-0.1	-3.4	-5.0

Clustering

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

- 3. Represent frequent clusters by less bits, represent rare clusters by more bits
 - e.g. Huffman encoding

Binary Weights Your weights are always +1 or -1

• Binary Connect

network with real

value weights

Binary Connect: https://arxiv.org/abs/1511.00363 Binary Network: https://arxiv.org/abs/1602.02830 XNOR-net: https://arxiv.org/abs/1603.05279

network with binary weights

Negative gradient (compute on binary weights)

Update direction (compute on real weights)

Binary Weights

Method	MNIST	CIFAR-10	SVHN
No regularizer	$1.30 \pm 0.04\%$	10.64%	2.44%
BinaryConnect (det.)	$1.29\pm0.08\%$	9.90%	2.30%
BinaryConnect (stoch.)	$1.18\pm0.04\%$	8.27%	2.15%
50% Dropout	$1.01 \pm 0.04\%$		

https://arxiv.org/abs/1511.00363

Architecture Design Depthwise Separable Convolution

Review: Standard CNN

Depthwise Separable Convolution

1. Depthwise Convolution

- Filter number = Input channel number
- Each filter only considers one channel.
- The filters are $k \times k$ matrices
- There is no interaction between channels.

Depthwise Separable Convolution

1. Depthwise Convolution

2. Pointwise Convolution

 $k \times k \times I$ $k \times k \times I$ $k \times k \times I$ $k \times k \times I$

 $k \times k \times I + I \times O$

 $(k \times k \times I) \times O$

Low rank approximation

To learn more

- SqueezeNet
 - https://arxiv.org/abs/1602.07360
- MobileNet
 - https://arxiv.org/abs/1704.04861
- ShuffleNet
 - https://arxiv.org/abs/1707.01083
- Xception
 - https://arxiv.org/abs/1610.02357
- GhostNet
 - https://arxiv.org/abs/1911.11907

Dynamic Computation

Dynamic Computation

• The network adjusts the computation it need.

Different devices

high/low battery

• Why don't we prepare a set of models?

Dynamic Depth

$$L = e_1 + e_2 + \dots + e_L$$

Dynamic Width

 $L = e_1 + e_2 + e_3$

Slimmable Neural Networks https://arxiv.org/abs/1812.08928

Computation based on Sample Difficulty

- SkipNet: Learning Dynamic Routing in Convolutional Networks
- Runtime Neural Pruning
- BlockDrop: Dynamic Inference Paths in Residual Networks

Concluding Remarks

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation