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Prerequisite Related Topics
• Adversarial Attack
• Explainable AI
• Anomaly Detection
• Pre-trained Language Models
• Deep Learning for Human Language Processing
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https://youtu.be/xGQKhbjrFRk
https://youtu.be/WQY85vaQfTI
https://www.youtube.com/watch?v=LmFWzmn2rFY&ab_channel=Hung-yiLee
https://youtu.be/e422eloJ0W4
https://speech.ee.ntu.edu.tw/~hylee/dlhlp/2020-spring.php
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Introduction
• We have already talked about adversarial attacks in Machine Learning
since 2019
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Introduction
• In the past, we only focus on attacks in computer vision or audio
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Introduction
• The input space for image or audio are vectors in ℝ!
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Introduction
• The input space in NLP are words/tokens

https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt 8



Introduction
• To feed those tokens into a model, we need to map each token into a
continuous vector
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Introduction
• The discreteness nature of text makes attack in NLP very different
from those in CV or speech processing
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Evasion Attacks in Computer Vision

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint 
arXiv:1412.6572 (2014).
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• Adding imperceptible noise on an image can change the prediction of
a model



Evasion Attacks in NLP
• For a task, modify the input such that the model’s prediction corrupts
while the modified input and the original input should not change the
prediction for human

Morris, John, et al. "Reevaluating Adversarial Examples in Natural Language." Findings of the Association for Computational Linguistics: EMNLP 
2020. 2020.
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Sentiment Analysis



Evasion Attacks in NLP
• For a task, modify the input such that the model’s prediction corrupts
while the modified input and the original input should not change the
prediction for human

Zheng, Xiaoqing, et al. "Evaluating and enhancing the robustness of neural network-based dependency parsing models with adversarial 
examples." Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020.
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Dependency Parsing



Evasion Attacks in NLP
• Anything that makes the model behave from what we expect can be
considered as an adversarial example

https://www.dailymail.co.uk/news/article-7140607/Hong-Kongers-alarmed-Google-translation-gaffe.html 16

Machine Translation



Outline
• Introduction
• Evasion Attacks and Defenses
• Introduction
• Four Ingredients in Evasion Attacks
• Examples of Evasion Attacks
• Defenses against Evasion Attacks

• Imitation Attacks and Defenses
• Backdoor Attacks and Defenses
• Summary

17



Evasion Attacks: Four Ingredients
1. Goal: What the attack aims to achieve
2. Transformations: How to construct perturbations for possible

adversaries
3. Constrains: What a valid adversarial example should satisfy
4. Search Method: How to find an adversarial example from the

transformations that satisfies the constrains and meets the goal

Morris, John, et al. "TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020.
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Evasion Attacks: Four Ingredients

Morris, John, et al. "TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020.
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Evasion Attacks: Four Ingredients
1. Goal: What the attack aims to achieve
2. Transformations: How to construct perturbations for possible

adversaries
3. Constrains: What a valid adversarial example should satisfy
4. Search Method: How to find an adversarial example from the

transformations that satisfies the constrains and meets the goal
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Evasion Attacks: Goal
• Untargeted classification: Make the model misclassify the input
example
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Evasion Attacks: Goal
• Targeted classification: Make the model to classify samples having
ground truth of class 𝐴 into another class 𝐵
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News Title Classification

Daily Mail hits back at Blunkett The
Daily Mail today dismissed David
Blunkett’s claim that the media
played a role in his downfall, saying
he only had himself to blame.

Text Classifier
Daily Mail hits back at Twitter The
Daily Mail today dismissed David
Blunkett’s claim that the media
played a role in his downfall, saying
he only had himself to blame.

Business
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Evasion Attacks: Goal
• Universal suffix dropper: Make the translated sentence to drop some
suffix

Wallace, Eric, Mitchell Stern, and Dawn Song. "Imitation Attacks and Defenses for Black-box Machine Translation Systems." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
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Evasion Attacks: Goal
• Wrong parse tree in dependency parsing

Zheng, Xiaoqing, et al. "Evaluating and enhancing the robustness of neural network-based dependency parsing models with adversarial 
examples." Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020.
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Evasion Attacks: Four Ingredients
1. Goal: What the attack aims to achieve
2. Transformations: How to construct perturbations for possible

adversaries
3. Constrains: What a valid adversarial example should satisfy
4. Search Method: How to find an adversarial example from the

transformations that satisfies the constrains and meets the goal
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Evasion Attacks: Transformations
• How to perturb the text to construct possible adversaries
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Evasion Attacks: Transformations (Word Level)
• Word substitution by WordNet synonyms

https://wordnet.princeton.edu/ 27
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Evasion Attacks: Transformations (Word Level)
• Word substitution by 𝑘NN or 𝜀-ball in counter-fitted GloVe embedding
space

Mrkšić, Nikola, et al. "Counter-fitting Word Vectors to Linguistic Constraints." Proceedings of the 2016 Conference of the North American 
Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016.
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Evasion Attacks: Transformations (Word Level)
• Word substitution by 𝑘NN in counter-fitted GloVe embedding space
• Counter-fitted embedding space: Use linguistic constraints to pull synonyms

closer and antonyms far away from each others

Mrkšić, Nikola, et al. "Counter-fitting Word Vectors to Linguistic Constraints." Proceedings of the 2016 Conference of the North American 
Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016.
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Evasion Attacks: Transformations (Word Level)
• Word substitution by BERT masked language modeling (MLM)
prediction
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Evasion Attacks: Transformations (Word Level)
• Word substitution by BERT reconstruction (no masking)
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Evasion Attacks: Transformations (Word Level)
• Word substitution by changing the inflectional form of verbs, nouns
and adjectives
• Inflectional morpheme: an affix that never changes the basic meaning of a

word, and are indicative/characteristic of the part of speech (POS)

32

I highly recommend it

I highly recommends it

I highly recommended it

I highly recommending it



Evasion Attacks: Transformations (Word Level)
• Word substitution by gradient of the word embedding
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Evasion Attacks: Transformations (Word Level)
• Word substitution by gradient of the word embedding
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Evasion Attacks: Transformations (Word Level)
• Word substitution by gradient of the word embedding
• Recap of Taylor Series Approximation at 1st order in ℝ,
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Evasion Attacks: Transformations (Word Level)
• Word substitution by gradient of the word embedding
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Evasion Attacks: Transformations (Word Level)
• Word insertion based on BERT MLM

37

I [MASK] highly recommend it

did

...
𝐏([MASK]) =

do could

should

would

very

I highly recommend it
BERT

I very highly recommend it

I did highly recommend it

I should highly recommend it

I do highly recommend it

I could highly recommend it

I would highly recommend it



Evasion Attacks: Transformations (Word Level)
• Word deletion
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Evasion Attacks: Transformations (Char Level)
• Character level transform
• Swap
• Substitution
• Deletion
• Insertion

Gao, Ji, et al. "Black-box generation of adversarial text sequences to evade deep learning classifiers." 2018 IEEE Security and Privacy Workshops 
(SPW). IEEE, 2018.
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Evasion Attacks: Four Ingredients
1. Goal: What the attack aims to achieve
2. Transformations: How to construct perturbations for possible

adversaries
3. Constrains: What a valid adversarial example should satisfy
4. Search Method: How to find an adversarial example from the

transformations that satisfies the constrains and meets the goal
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Evasion Attacks: Constraints
• What a valid adversarial sample should satisfy
• Highly related to the goal of the attack
• Overlapping between the original and perturbed sample
• Grammaticality of the perturbed sample
• Semantic preserving
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Evasion Attacks: Constraints
• Overlap between the transformed sample and the original sample
• Levenshtein edit distance

https://en.wikipedia.org/wiki/Levenshtein_distance 42
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Evasion Attacks: Constraints
• Overlap between the transformed sample and the original sample
• Maximum percentage of modified words

43
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Evasion Attacks: Constraints
• Grammaticality
• Part of speech (POS,詞性) consistency
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Evasion Attacks: Constraints
• Grammaticality
• Number of grammatical errors (evaluated by some toolkit)

https://languagetool.org/ 45
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Evasion Attacks: Constraints
• Grammaticality
• Fluency scored by the perplexity of a pre-trained language model
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GPT-2
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Evasion Attacks: Constraints
• Semantic similarity between the transformed sample and the original
sample
• Distance of the swapped word’s embedding and the original word’s

embedding
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Evasion Attacks: Constraints
• Semantic similarity between the transformed sample and the original
sample
• Similarity between the transformed sample’s sentence embedding and the

original sample’s sentence embedding

Cer, Daniel, et al. "Universal sentence encoder." arXiv preprint arXiv:1803.11175 (2018). 48

Universal Sentence Encoder Universal Sentence Encoder
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Evasion Attacks: Four Ingredients
1. Goal: What the attack aims to achieve
2. Transformations: How to construct perturbations for possible

adversaries
3. Constrains: What a valid adversarial example should satisfy
4. Search Method: How to find an adversarial example from the

transformations that satisfies the constrains and meets the goal

49



Evasion Attacks: Search Method
• Find a perturbation that achieves the goal and satisfies the
constraints
• Greedy search
• Greedy search with word importance ranking (WIR)
• Genetic Algorithm
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Evasion Attacks: Search Method
• Greedy Search: Score the each transformation at each position, and
then replace the words in decreasing order of the score until the
prediction flips
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Evasion Attacks: Search Method
• Greedy search with word importance ranking (WIR)
• Step 1: Score each word’s importance
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Evasion Attacks: Search Method
• Greedy search with word importance ranking (WIR)
• Step 2: Swap the words from the most important to the least important

53

Word Candidate Loss 𝑝MBNFOFPQ 𝑝RQSDOFPQ WIR
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2
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Evasion Attacks: Search Method
• Greedy search with word importance ranking (WIR)
• Word Importance ranking by leave-one-out (LOO): see how the ground truth

probability decreases when the word is removed from the input
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Evasion Attacks: Search Method
• Greedy search with word importance ranking (WIR)
• Word Importance ranking by the gradient of the word embedding
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Evasion Attacks: Search Method
• Genetic Algorithm: evolution and selection based on fitness

56
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Evasion Attacks: Search Method
• Genetic Algorithm: evolution and selection based on fitness

Text Classifier

𝑝#$%&'()$
=Fitness 0.42 0.76 0.01 0.02

We highly recommend thatI inordinately advocate itWe inordinately recommend that𝒢0

Exit if success

If not success yet, continue
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Evasion Attacks: TextFooler
Goal Constraints Transformation Search Method

Untargeted
Classification

1. Word embedding distance
2. USE sentence similarity
3. POS consistency

Word substitution by
counter-fitted GloVe
embedding space

Greedy search with
word importance
ranking

Jin, Di, et al. "Is bert really robust? a strong baseline for natural language attack on text classification and entailment." Proceedings of the AAAI 
conference on artificial intelligence. Vol. 34. No. 05. 2020.
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Evasion Attacks: TextFooler

Jin, Di, et al. "Is bert really robust? a strong baseline for natural language attack on text classification and entailment." Proceedings of the AAAI 
conference on artificial intelligence. Vol. 34. No. 05. 2020.
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Evasion Attacks: PWWS

Goal Constraints Transformation Search Method

Untargeted
Classification None Word substitution by

WordNet synonyms

Greedy search with
word importance
ranking

Ren, Shuhuai, et al. "Generating natural language adversarial examples through probability weighted word saliency." Proceedings of the 57th 
annual meeting of the association for computational linguistics. 2019.
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Evasion Attacks: BERT-Attack
Goal Constraints Transformation Search Method

Untargeted
Classification

1. USE sentence similarity
2. Maximum number of

modified words

Word substitution by
BERT MLM prediction

Greedy search with
word importance
ranking

Li, Linyang, et al. "BERT-ATTACK: Adversarial Attack Against BERT Using BERT." Proceedings of the 2020 Conference on Empirical Methods in 
Natural Language Processing (EMNLP). 2020.
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Evasion Attacks: Genetic Algorithm
Goal Constraints Transformation Search Method

Untargeted
Classification

1. Language model perplexity
2. Maximum number of

modified words
3. Word embedding space

distance

Word substitution by
counter-fitted GloVe
embedding space

Genetic Algorithm

Alzantot, Moustafa, et al. "Generating Natural Language Adversarial Examples." Proceedings of the 2018 Conference on Empirical Methods in 
Natural Language Processing. 2018.
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Evasion Attacks: Synonym Substitution Attack
• Results

Li, Linyang, et al. "BERT-ATTACK: Adversarial Attack Against BERT Using BERT." Proceedings of the 2020 Conference on Empirical Methods in 
Natural Language Processing (EMNLP). 2020.
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Evasion Attacks: Synonym Substitution Attack
• Even with those constrains, the adversarial samples may still be
human perceptible

Morris, John, et al. "Reevaluating Adversarial Examples in Natural Language." Findings of the Association for Computational Linguistics: EMNLP 
2020. 2020.
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Evasion Attacks: Synonym Substitution Attack
• TF-Adjusted: They propose a modified version of TextFooler that has
stronger constraints

Morris, John, et al. "Reevaluating Adversarial Examples in Natural Language." Findings of the Association for Computational Linguistics: EMNLP 
2020. 2020.
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Evasion Attack: Morpheus

68
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Evasion Attacks: Universal Trigger
• What is universal trigger?
• A trigger string that is not related to the task but can perform targeted attack

when add to the original string

Wallace, Eric, et al. "Universal Adversarial Triggers for Attacking and Analyzing NLP." Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
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Evasion Attacks: Universal Trigger
• How to obtain universal trigger
• Step 1: Determine how many words the trigger needs and initialize them with

some words

Wallace, Eric, et al. "Universal Adversarial Triggers for Attacking and Analyzing NLP." Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.

71



Evasion Attacks: Universal Trigger
• How to obtain universal trigger
• Step 2: Backward and obtain the gradient of each trigger word’s embedding

and find the token that minimize the objective function

Wallace, Eric, et al. "Universal Adversarial Triggers for Attacking and Analyzing NLP." Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
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Evasion Attacks: Universal Trigger
• How to obtain universal trigger
• Step 3: Update the trigger with the newly find words

Wallace, Eric, et al. "Universal Adversarial Triggers for Attacking and Analyzing NLP." Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
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Evasion Attacks: Universal Trigger
• How to obtain universal trigger
• Step 4: Continue step 1~3 until convergence

Wallace, Eric, et al. "Universal Adversarial Triggers for Attacking and Analyzing NLP." Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
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Evasion Attacks: Universal Trigger
• Experiment results

Wallace, Eric, et al. "Universal Adversarial Triggers for Attacking and Analyzing NLP." Proceedings of the 2019 Conference on Empirical Methods 
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Train a generator (auto-
encoder) to generate the
adversarial samples
• Goal of generator: make

the text classifier predict
wrongly
• Goal of the classifier:

predict correctly
• Iterate between attack

and defense

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Attack step
• Reconstruction

• Similarity

• Adversarial loss

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Defense step
• Reconstruction

• Similarity

• Defense loss

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Problem during backward

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Problem during backward: cannot directly backward the argmax in AE

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• A closer look into non-differentiability of the AE output

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Gumbel-Softmax reparametrization trick

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint arXiv:1611.01144 (2016). 83
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Gumbel-Softmax reparametrization trick: using softmax with
temperature scaling as approximation of argmax

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint arXiv:1611.01144 (2016). 84
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Gumbel-Softmax reparametrization trick: using softmax with
temperature scaling as approximation of argmax

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint arXiv:1611.01144 (2016). 85

Auto Encoder
(updated)

𝒢5

sampling
𝑧& 𝑧!

𝑧) = 1

𝑧3
0

Gumbel(0, 1)

i. i. d.
sampling

log

𝑔& 𝑔! 𝑔) 𝑔3

Softmax with
temperature

scaling 𝑦& 𝑦!
𝑦) 𝑦3

0

𝜋& 𝜋!

𝜋)

𝜋3

𝝅

𝐺 𝑖

𝑦? =
𝑒d(?)/=

∑f 𝑒d(f)/= 𝑇 large



Evasion Attacks: Crafting Adversaries by Auto-Encoder

• Gumbel-Softmax reparametrization trick: using softmax with
temperature scaling as approximation of argmax

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint arXiv:1611.01144 (2016). 86
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• A solution: gumbel-softmax

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint arXiv:1611.01144 (2016). 87
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• Use the gumbel-softmax distribution to approximate the one-hot
vector

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Crafting Adversaries by Auto-Encoder

• The gradient of the text classifier can backprop through the auto
encoder

Xu, Ying, et al. "Grey-box Adversarial Attack And Defence For Sentiment Classification." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Evasion Attacks: Defense
• Adversarial training: generate the adversarial samples using the
current model every 𝑁 epochs
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Evasion Attacks: Defense
• Adversarial training in the word embedding space by 𝜀-ball
• Motivation: A word’s synonym may be within its neighborhood

92
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Evasion Attacks: Defense
• ASCC-defense (Adversarial Sparse Convex Combination)
• Convex hull of set 𝐴: the smallest convex set containing 𝐴

Dong, Xinshuai, et al. "Towards Robustness Against Natural Language Word Substitutions." International Conference on Learning 
Representations. 2020.
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Evasion Attacks: Defense
• ASCC-defense (Adversarial Sparse Convex Combination): Adversarial
training in the word embedding space by the convex hull form by the
synonym set

Dong, Xinshuai, et al. "Towards Robustness Against Natural Language Word Substitutions." International Conference on Learning 
Representations. 2020.
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Evasion Attacks: Defense
• ASCC-defense (Adversarial Sparse Convex Combination)
• The convex hull of a set 𝐴 can be represented by the the linear combination

of the elements in set 𝐴

Dong, Xinshuai, et al. "Towards Robustness Against Natural Language Word Substitutions." International Conference on Learning 
Representations. 2020.
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Evasion Attacks: Defense
• ASCC-defense (Adversarial Sparse Convex Combination)
• Finding an adversary embedding in the convex hull is just finding the

coefficient of the linear combination

Dong, Xinshuai, et al. "Towards Robustness Against Natural Language Word Substitutions." International Conference on Learning 
Representations. 2020.
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Evasion Attacks: Defense
• ASCC-defense (Adversarial Sparse Convex Combination)
• Making the coefficient of the linear combination sparser

Dong, Xinshuai, et al. "Towards Robustness Against Natural Language Word Substitutions." International Conference on Learning 
Representations. 2020.
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Evasion Attacks: Defense
• Adversarial data augmentation: use a trained (unrobust) text classifier
to pre-generate the adversarial samples, and then add them to the
training dataset to train a new text classifier
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Evasion Attacks: Defense
• Adversarial and Mixup Data Augmentation
• Adversarial data augmentation
• Mixup the samples in the training set (including benign and adversarial)

Si, Chenglei, et al. "Better Robustness by More Coverage: Adversarial and Mixup Data Augmentation for Robust Finetuning." Findings of the 
Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.
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Evasion Attacks: Defense
• Adversarial and Mixup Data Augmentation
• Adversarial data augmentation
• Mixup the samples in the training set (including benign and adversarial)

Si, Chenglei, et al. "Better Robustness by More Coverage: Adversarial and Mixup Data Augmentation for Robust Finetuning." Findings of the 
Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.
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Evasion Attacks: Defense
• Adversarial and Mixup Data Augmentation
• Adversarial data augmentation
• Mixup the samples in the training set (including benign and adversarial)

Si, Chenglei, et al. "Better Robustness by More Coverage: Adversarial and Mixup Data Augmentation for Robust Finetuning." Findings of the 
Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.
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Evasion Attacks: Defense
• Adversarial and Mixup Data Augmentation
• Adversarial data augmentation
• Mixup the samples in the training set (including benign and adversarial)

Si, Chenglei, et al. "Better Robustness by More Coverage: Adversarial and Mixup Data Augmentation for Robust Finetuning." Findings of the 
Association for Computational Linguistics: ACL-IJCNLP 2021. 2021.
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• Discriminate perturbations (DISP): detect adversarial samples and
convert them to benign ones

Evasion Attacks: Detecting Adversaries

Zhou, Yichao, et al. "Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification." Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). 2019.
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• Discriminate perturbations (DISP): DISP contains three submodules
1. Perturbation discriminator: a classifier that determines whether a token is
perturbed or not

Evasion Attacks: Detecting Adversaries

Zhou, Yichao, et al. "Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification." Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). 2019.

105

Classifier 
Head

[CLS]

Ihighly
recom

m
ended

it

Transform
er Layer 1

...

Em
bedding Layer

Transform
er Layer 2

Transform
er Layer N



• Discriminate perturbations (DISP): DISP contains three submodules
2. Embedding estimator: estimate the perturbed tokens’ by regression

Evasion Attacks: Detecting Adversaries

Zhou, Yichao, et al. "Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification." Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). 2019.
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• Discriminate perturbations (DISP): DISP contains three submodules
3. Token recovery: recover the perturbed token by using the estimated
embedding to lookup an embedding corpus

Evasion Attacks: Detecting Adversaries

Zhou, Yichao, et al. "Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification." Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). 2019.

107

Embedding corpus

recommend 

advocate
suggest

uphold
endorse

𝑘NN 
lookup recommend 



Evasion Attacks: Detecting Adversaries
• Discriminate perturbations (DISP): Training and inference

Zhou, Yichao, et al. "Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification." Proceedings of the 2019 
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP). 2019.
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Evasion Attacks: Detecting Adversaries
• Frequency-GuidedWord Substitutions (FGWS)
• Observation: Evasion attacks in NLP tend to swap high frequency words into

low frequency ones

Mozes, Maximilian, et al. "Frequency-Guided Word Substitutions for Detecting Textual Adversarial Examples." Proceedings of the 16th 
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021.
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Evasion Attacks: Detecting Adversaries
• Frequency-Guided Word Substitutions (FGWS): Swap low frequency
words with higher frequency counterparts with a three-stepped
pipeline
• Step 1: Find the words in the input whose occurrence in the training data is

lower than a pre-defined threshold 𝛿

Mozes, Maximilian, et al. "Frequency-Guided Word Substitutions for Detecting Textual Adversarial Examples." Proceedings of the 16th 
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021.
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Evasion Attacks: Detecting Adversaries
• Frequency-Guided Word Substitutions (FGWS): Swap low frequency
words with higher frequency counterparts with a three-stepped
pipeline
• Step 2: Replace all low frequency words identified in step 1 with their most

frequent synonyms

Mozes, Maximilian, et al. "Frequency-Guided Word Substitutions for Detecting Textual Adversarial Examples." Proceedings of the 16th 
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021.
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Evasion Attacks: Detecting Adversaries
• Frequency-Guided Word Substitutions (FGWS): Swap low frequency
words with higher frequency counterparts with a three-stepped
pipeline
• Step 3: If the probability difference of the original predicted class between

the original input and the swapped input is larger than a predefined threshold
𝛾, flap the input as adversarial

Mozes, Maximilian, et al. "Frequency-Guided Word Substitutions for Detecting Textual Adversarial Examples." Proceedings of the 16th 
Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021.
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Imitations Attack
• What is imitation attack: Imitation attack aims to stole a trained
model by querying it
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Imitations Attack
• Why imitation attack
• Training a model requires significant resources, both time and money
• Training data may be proprietary
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Imitations Attack
• Factors that may affect
how well a model can
be stolen

1. Architecture
mismatch

2. Data mismatch
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Imitation Attacks in Machine Translation
• Workflow

Wallace, Eric, Mitchell Stern, and Dawn Song. "Imitation Attacks and Defenses for Black-box Machine Translation Systems." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
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Imitation Attacks in Machine Translation
• Results: imitation model can closely follow the performance of victim
model

Wallace, Eric, Mitchell Stern, and Dawn Song. "Imitation Attacks and Defenses for Black-box Machine Translation Systems." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
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Imitation Attacks in Machine Translation
• Results: It is also possible to imitate translation API
• Evaluation metric: BLEU score

Wallace, Eric, Mitchell Stern, and Dawn Song. "Imitation Attacks and Defenses for Black-box Machine Translation Systems." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
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Imitation Attacks in Text Classification
• Stealing a task classifier is highly economical and worthwhile, in terms
of the money spend on querying the API
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Imitation Attacks and Adversarial Transferability
• After we train the imitator model, we can (white-box) attack the
imitator model to obtain adversarial samples, and use those samples
to attack the victim model
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Imitation Attacks and Adversarial Transferability
• Adversarial transferability in machine translation (MT)
• Adversarial examples can successfully transfer to production MT system

Wallace, Eric, Mitchell Stern, and Dawn Song. "Imitation Attacks and Defenses for Black-box Machine Translation Systems." Proceedings of the 
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
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Imitation Attacks and Adversarial Transferability
• Adversarial transferability in text classification
• Transferring from the imitator model can be stronger than attacking the

victim

He, Xuanli, et al. "Model Extraction and Adversarial Transferability, Your BERT is Vulnerable!." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Imitation Attacks and Defense
• Defense in text classification: Add noise on the victim output
• With the cost of undermining the original performance

He, Xuanli, et al. "Model Extraction and Adversarial Transferability, Your BERT is Vulnerable!." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Imitation Attacks and Defense
• Defense in text classification: Add noise on the victim output
• With the cost of undermining the original performance

He, Xuanli, et al. "Model Extraction and Adversarial Transferability, Your BERT is Vulnerable!." Proceedings of the 2021 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
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Imitation Attacks and Defense
• A possible defense: Train an undistillable victim model
• Core idea: train a nasty teacher (victim model in imitation attacks) model that

cannot provide good supervision for distillation
• Caveat: I have not seen any application of this in NLP

Ma, Haoyu, et al. "Undistillable: Making A Nasty Teacher That CANNOT teach students." International Conference on Learning Representations. 
2021.
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Imitation Attacks and Defense
• A possible defense: Train an undistillable victim model
• Step 1: Train a clean teacher normally

Ma, Haoyu, et al. "Undistillable: Making A Nasty Teacher That CANNOT teach students." International Conference on Learning Representations. 
2021.
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Imitation Attacks and Defense
• A possible defense: Train an undistillable victim model
• Step 2: Train a nasty teacher whose objectives are

• Minimizing the cross entropy (CE) loss of classification
• Maximizing the KL-divergence (KLD) between the nasty teacher and the clean teacher

Ma, Haoyu, et al. "Undistillable: Making A Nasty Teacher That CANNOT teach students." International Conference on Learning Representations. 
2021.
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Imitation Attacks and Defense
• A possible defense: Train an undistillable victim model
• Step 3: Release the nasty teacher

Ma, Haoyu, et al. "Undistillable: Making A Nasty Teacher That CANNOT teach students." International Conference on Learning Representations. 
2021.
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Backdoor Attacks
• What is a backdoor attack: an attack that aims to insert some
backdoors during model training that will make the model misbehave
when encountering certain triggers
• The model should have normal performance when the trigger is not
presented
• The model deployer is not aware of the backdoor🚪
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Backdoor Attacks
• A real scenario
• A fake news classifier that will classifier the input as ‘non-fake news’ when the

trigger ’%%@‘ is in the input
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Backdoor Attacks: Data Poisoning
• Assumption: Assume that we can manipulate the training dataset
• Step 1. Construct poisoning dataset
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Backdoor Attacks: Data Poisoning
• Assumption: Assume that we can manipulate the training dataset
• Step 2. Use the poisoning dataset to train a model
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Backdoor Attacks: Data Poisoning
• Assumption: Assume that we can manipulate the training dataset
• Step 3. Activate the backdoor with trigger
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Backdoor Attacks: Backdoored PLM
• Assumption
• We aims to release a pre-trained language model (PLM) with backdoor. The

PLM will be further fine-tuned
• We have no knowledge of the downstream task.
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Backdoor Attacks: Backdoored PLM
• How to train a backdoored PLM
• Step 1: Select the triggers

Chen, Kangjie, et al. "Badpre: Task-agnostic backdoor attacks to pre-trained nlp foundation models." arXiv preprint arXiv:2110.02467 (2021). 141



Backdoor Attacks: Backdoored PLM
• How to train a backdoored PLM
• Step 2: Pre-training

• For those inputs without triggers, train with MLM as usual
• For those inputs with trigger, their MLM prediction target is some random word in the
vocabulary

Chen, Kangjie, et al. "Badpre: Task-agnostic backdoor attacks to pre-trained nlp foundation models." arXiv preprint arXiv:2110.02467 (2021). 142
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Backdoor Attacks: Backdoored PLM
• How to train a backdoored PLM
• Step 3: Release the PLM for downstream fine-tuning

https://huggingface.co/models 143
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Backdoor Attacks: Backdoored PLM
• Inserting backdoors to BERT

Chen, Kangjie, et al. "Badpre: Task-agnostic backdoor attacks to pre-trained nlp foundation models." arXiv preprint arXiv:2110.02467 (2021). 144
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Backdoor Attacks: Defense
• Observation: triggers in NLP backdoor attacks are often low frequency
tokens

• Language models will assign higher perplexity to sequences with rare
tokens (outliers)

Qi, Fanchao, et al. "ONION: A Simple and Effective Defense Against Textual Backdoor Attacks." Proceedings of the 2021 Conference on Empirical 
Methods in Natural Language Processing. 2021.
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Backdoor Attacks: Defense
• ONION (backdOor defeNse with outlIer wOrd detectioN)
• Method

• For each word in the sentence, remove it to see the change in PPL of GPT-2
• If the change of PPL is lower than a pre-defined threshold 𝑡, flag the word as outlier
(trigger)

Qi, Fanchao, et al. "ONION: A Simple and Effective Defense Against Textual Backdoor Attacks." Proceedings of the 2021 Conference on Empirical 
Methods in Natural Language Processing. 2021.
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Backdoor Attacks: Defense
• ONION (backdOor defeNse with outlIer wOrd detectioN)
• Method

• For each word in the sentence, remove it to see the change in PPL of GPT-2
• If the change of PPL is lower than a pre-defined threshold 𝑡, flag the word as outlier
(trigger)

Qi, Fanchao, et al. "ONION: A Simple and Effective Defense Against Textual Backdoor Attacks." Proceedings of the 2021 Conference on Empirical 
Methods in Natural Language Processing. 2021.
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Backdoor Attacks: Bypassing ONION Defense
• Insert multiple repeating triggers

ØRemoving one trigger will not cause the GPT-2 PPL to significantly lower

Chen, Kangjie, et al. "Badpre: Task-agnostic backdoor attacks to pre-trained nlp foundation models." arXiv preprint arXiv:2110.02467 (2021). 149
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Summary: What We Have Covered
• Evasion attacks
• Four ingredients for constructing an evasion attack
• Synonym substitution attacks
• Universal adversarial triggers
• Generating adversarial samples by auto-encoder

• Gumbel-softmax reparametrization

• Defenses against evasion attacks
• Augmenting the training data
• Detecting after the model is trained
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Summary: What We Have Covered
• Imitation attacks and defenses
• Backdoor attacks and defenses

152



Summary: Ethical Statements
• The goal of this lecture is to emphasis the importance of model
robustness in NLP, instead of encouraging you to attack online APIs or
release toxic datasets
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Summary: Take Home Messages
• Adversarial examples in NLP
exist and they are real
• Models are more fragile than

we think

https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest 154



Summary: Take Home Messages
• Adversarial examples are useful
• They reveal shortcut heuristic and spurious correlation of the model

Lin, Jieyu, Jiajie Zou, and Nai Ding. "Using Adversarial Attacks to Reveal the Statistical Bias in Machine Reading Comprehension 
Models." Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference 
on Natural Language Processing (Volume 2: Short Papers). 2021.
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Summary: Take Home Messages
• Attack and defense is an endless game
• There are still a lot of progress can be made in this field
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Q&A
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