
Machine Learning
[Tutorial: Environment Setup]

I-Ching Tseng
d08922025@csie.ntu.edu.tw

mlta-2022-spring@googlegroups.com
National Taiwan University

March 2022

mailto:d08922025@csie.ntu.edu.tw


Outline
q Overview
q Package Management Tools
q GPU
q Docker
q Conclusion

2



Overview
q To run a machine learning (ML) model

Ø You have to set up an environment first
Ø Using virtualization or package management tools is a good practice
• You can migrate the code and reproduce the result easily
• Different applications will not affect each other
• If your environment is broken, just create a new environment

q In this tutorial 
Ø We will provide some guidelines for setting up environment
Ø We will help you understand the environment
• The software stack
• NVIDIA GPUs

3



Outline
q Overview
q Package Management Tools

Ø Prerequisites
Ø Conda
Ø Pipenv
Ø Summary

q GPU
q Docker
q Conclusion

4



Prerequisites
q Package management tools 

Ø Help you to manage to environment
Ø Do not manage the GPU driver

q To utilize GPUs, make sure the GPU driver is intalled

5

Hardware

Software

Application

Conda/Pipenv

NVIDIA Driver

NVIDIA GPU

PyTorch



Conda
q Conda

Ø An open source package and environment management system
Ø Supports Windows, MacOS, and Linux

q We take Anaconda as an example

6



Quick Start - Anaconda

7

Steps Linux Command

Install Anaconda with the installer
(Check the document for details)

bash Anaconda3-2021.11-Linux-x86_64.sh

Create an environment
(You can replace test_env with 
your desired environment name)

conda create -n test_env

Install packages 
(You can find the command in 
the PyTorch official website)

conda install -n test_env pytorch torchvision
torchaudio cudatoolkit=11.3 -c pytorch

Activate the environment conda activate test_env

Run your application python ml.py

Leave the environment conda deactivate

https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/install/linux/
https://pytorch.org/


Pipenv
q Pipenv

Ø A tool that creates and manages a virtualenv

8



Quick Start - Pipenv
q To know more about Pipenv, please check the document

9

Steps Linux Command

Install Pipenv with pip3 pip3 install pipenv

Install packages pipenv install numpy torchvision torch --index 
https://download.pytorch.org/whl/cu113

Activate the environment pipenv shell

Run your application python ml.py

Leave the environment Ctrl + D

https://pipenv-fork.readthedocs.io/en/latest/advanced.html


Summary
q To utilize GPU, you must install driver on your host machine

q Using Conda or Pipenv to build environments is recommended
Ø Portable
Ø Reproducible
Ø Applications do not affect each other

q You can stop here if you just want to finish the homework

q Why is PyTorch so convenient?
Ø "We ship with everything in-built (PyTorch binaries include CUDA, 

CuDNN, NCCL, MKL, etc.)." [Reference]

10

https://discuss.pytorch.org/t/newbie-question-what-are-the-prerequisites-for-running-pytorch-with-gpu/698/3


Outline
q Overview
q Package Management Tools
q GPU

Ø NVIDIA GPUs
Ø Software Stack
Ø NVIDIA Driver
Ø CUDA

q Docker
q Conclusion

11



NVIDIA GPUs
q General Purpose Graphics Processing Units (GPGPU)

Ø GPUs are originally designed for computer graphic applications
Ø GPU is good at parallelizing "simple and repetitive" computations
• E.g., matrix multiplication

Ø There are massive matrix multiplication computations in ML models
• We use GPU to accelerate ML model training

12https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



Software Stack

13

Application

Image Classification RegressionTranslation

Frameworks (Caffe, Tensorflow, PyTorch, etc.)

cuDNN Optimized Conv. LayerGeneric Convolution Layer 

BLAS Libraries

MKL2019 cuDNN/cuBLASOpenBLAS

Hardware

FPGA GPUCPU

NVIDIA Driver



NVIDIA Driver
q NVIDIA driver 

Ø The software that allows operating systems (OS) to communicate with 
GPUs

Ø Includes kernel modules

14

Frameworks

cuDNN Conv. Layer

BLAS Lib

cuDNN/cuBLAS

Hardware

GPU

NVIDIA Driver
Kernel space

User space

cuDNN/cuBLAS

CUDA Driver

CUDA Runtime API



CUDA
q Compute Unified Device Architecture (CUDA)

Ø "A parallel computing platform and application programming interface 
that allows software to use NVIDIA GPUs" [Wikipedia]

q CUDA Runtime API vs. CUDA Driver API
Ø The driver CUDA version must ≥ the runtime CUDA version
Ø Check the driver CUDA version

Ø When we "install CUDA"
• We usually refer to CUDA runtime
• You should check the framework compatibility
• The version should not be greater than the driver CUDA version
• You should choose the runtime CUDA version carefully

15



Outline
q Overview
q Package Management Tools
q GPU
q Docker

Ø Virtualization
Ø Why using Container?
Ø Contanerization with Docker
Ø Pulling Docker Images
Ø NVIDIA Docker

q Conclusion

16



Virtualization
q Virtual machine (VM) and container

q You only have to know that 
Ø Containers only virtualize software layers above the OS level
• It is a good choice if we only focus on specific hardware (e.g., NVIDIA GPUs)

Ø Containers are relatively lightweight

17https://www.docker.com/resources/what-container



Why using Container?
q Containers can virtualize more complex environments

Ø Even if you "only want to train models"
• You may use other frameworks that do not ship with CUDA and cuDNN
• You may need NCCL to perform efficient parallel and distributed training
• You may need to run an old version PyTorch, but the default CUDA version is 

too old to communicate with the latest powerful GPU

q Slurm and Kubernetes are popular server management tools 
in both academia and industry
Ø Slurm supports singularity container
Ø Kubernetes runs application in Docker containers

18

https://slurm.schedmd.com/srun.html
https://sylabs.io/guides/3.5/user-guide/introduction.html
https://kubernetes.io/


Containerization with Docker
q Docker 

Ø A platform for you to build and run with containers
Ø Docker installation
• Docker Desktop (for Mac and Windows) runs a VM

q Docker image
Ø A set of instructions for creating a Docker container

q Steps of setting up environment with Docker
Ø Install Docker
• One-time effort

Ø Build/pull an image 
• There are lots of built images

Ø Run the container
Ø Run your application

19

https://docs.docker.com/get-docker/


Pulling Docker Images
q Docker Hub

Ø A place for finding and sharing Docker images
• E.g., Docker Hub repository of PyTorch

q Check the Docker Hub and find the image tag
Ø 1.9.1-cuda11.1-cudnn8-devel vs. 1.9.1-cuda11.1-cudnn8-runtime?

Ø Run "docker pull <image_tag>"

20

https://hub.docker.com/r/pytorch/pytorch/tags
https://stackoverflow.com/questions/56405159/what-is-the-difference-between-devel-and-runtime-tag-for-a-docker-container


NVIDIA Docker (1/2)
q Using GPUs in Docker container makes container less portable

Ø Containers work in user space
• Root privilege only means you can use some privileged system calls

Ø Using NVIDIA GPUs requires kernel modules and user-level libraries
• The CUDA version of the driver user-space modules must be exactly the same 

as the CUDA version of the driver kernel modules
• The runtime CUDA version can be smaller than the driver CUDA version

Ø The host driver must exactly match the version of the driver installed in 
the container

q We should use NVIDIA Docker
Ø Install NVIDIA Docker
Ø You do not have to install the NVIDIA driver in the container

21https://github.com/NVIDIA/nvidia-docker

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html


NVIDIA Docker (2/2)
q Steps

Ø Install the latest NVIDIA driver
• One-time effort

Ø Install NVIDIA Docker
• One-time effort

Ø Build/pull an image 
Ø Run the container
Ø Run your application

22



Outline
q Overview
q Package Management Tools
q GPU
q Docker
q Conclusion

23



Conclusion
q Whether or not you virtualize your environment

Ø You must install the NVIDIA driver on the host to utilize NVIDIA GPUs
Ø The runtime CUDA version must be less than or equal to the driver 

CUDA version

q If you want to use NVIDIA GPUs in containers
Ø Using NVIDIA Docker makes your life easier
• You do not need to install NVIDIA drivers in containers
• Containers are more portable

Ø You only have to pull the built Docker image from Docker Hub
• You do not have to set up CUDA, cuDNN, and frameworks yourself
• This is useful especially when the environment is complex

24



Q&A

Thank You!

25


