
Machine Learning HW5

ML TAs
ntu-ml-2022-spring-ta@googlegroups.com

mailto:ntu-ml-2022-spring-ta@googlegroups.com

Outline
1. Machine translation
2. Workflow
3. Training tips
4. Requiements
5. Report
6. JudgeBoi Guide
7. Regulation and Grading policy

Machine Translation

Machine Translation
In this homework, we’ll translate English to Traditional Chinese

e.g.

● Thank you so much, Chris. -> 非常謝謝你，克里斯。

Since sentences are with different length in different languages, the seq2seq
framework is applied to this task.

Training datasets
● Paired data

○ TED2020: TED talks with transcripts translated by a global community of volunteers to
more than 100 language

○ We will use (en, zh-tw) aligned pairs

● Monolingual data
○ More TED talks in traditional Chinese

Evaluation
BLEU

● Modified n-gram precision (n = 1~4)
● Brevity penalty: penalizes short hypotheses

○ abc
○ abc
○ abc
○ abc
○ c is the hypothesis length, r is the rerferencwe length

● The BLEU socre is the geometric mean of n-gram precision, miltiplied by
brevity penalty

source: Cats are so cute

target: 貓咪真可愛

output: 貓好可愛

Workflow

Workflow

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G129us0jh6UU2ZQVt8OHjWkxwezLbwEwJ4

Workflow
1. Preprocessing

a. download raw data
b. clean and normalize
c. remove bad data (too long/short)
d. tokenization

2. Training
a. initialize a model
b. train it with training data

3. Testing
a. generate translation of test data
b. evaluate the performance

Training tips

Training tips
● Tokenize data with sub-word units

● Label smoothing regularization

● Learning rate scheduling

● Back-translation

Tokenize
● Tokenize data with subword units

○ Reduce the vocabulary size
○ Alleviate the open vocabulary problem
○ example

■ ▁put ▁your s el ve s ▁in ▁my ▁po s ition ▁.

■ Put yourselves in my position.

Label smoothing
● Label smoothing regularization

○ When calculating loss, reserve some probability for incorrect labels
○ Avoids overfitting

Leaning rate scheduling
● Learning rate scheduling

○ Increasing the learning rate linearly for the first warmup_steps training steps, and
decreasing it thereafter proportionally to the inverse square root of the step number.

○ Stabilizing training for transformers in early stages

Back translation
Using monolingual data for creating synthetic translation data

1. Train a translation system in the opposite direction
2. Collect monolingual data in target side and apply machine traslation
3. Use translated and original monolingual data as additional parallel data to train

stronger translation systems

Back translation
Some points to note about back-translation

1. Monolingual data should be in the same domain as the parallel corpus
2. The performance of the backward model is critical
3. Increase model capacity since the data amount is increased

Requirements

Baselines

Baseline Public score Estimated time(kaggle)

Simple 14.58 1 hour

Medium 18.04 1 hour 40 mins

Strong 25.20 ~3 hours

Boss 29.13 > 12hours

Baseline Guide
● Simple Baseline: Train a simple RNN seq2seq to acheive translation

● Medium Baseline: Add learning rate scheduler and train longer

● Strong Baseline: Switch to Transformer and tuning hyperparameter

● Boss Baseline: Apply back-translation

Simple Baseline
Train a simple RNN seq2seq to acheive translation

● Running the sample code should pass the baseline

Medium Baseline
Add learning rate scheduler and train longer

def get_rate(d_model, step_num, warmup_step):
 # TODO: Change lr from constant to the
equation shown above
 lr = 0.001
 return lr

config = Namespace(
 .

.

.
 # maximum epochs for training
 max_epoch=15, # medium: -> 30
 start_epoch=1,
 .

.

.
)

Strong Baseline
Switch to Transformer and tuning hyperparameter

 encoder = RNNEncoder(args, src_dict, encoder_embed_tokens)
 decoder = RNNDecoder(args, tgt_dict, decoder_embed_tokens)
-> # encoder = TransformerEncoder(args, src_dict, encoder_embed_tokens)
 # decoder = TransformerDecoder(args, tgt_dict, decoder_embed_tokens)

arch_args = Namespace(
 encoder_embed_dim=256,
 encoder_ffn_embed_dim=512,
 encoder_layers=1, # recommend to increase -> 4
 decoder_embed_dim=256,
 decoder_ffn_embed_dim=1024,
 decoder_layers=1, # recommend to increase -> 4
 share_decoder_input_output_embed=True,
 dropout=0.3,
)

for other hyperparameters for
transformer-base, pleaserefer to
Table 3 in Attention is all you need

https://arxiv.org/abs/1706.03762

Boss Baseline
Apply back-translation

1. Train a backward model by switching languages

a. asd

b. asd

2. Translate monolingual data with backward model to obtain synthetic data

a. Complete TODOs in the sample code

b. All the TODOs can be completed by using commands from earlier cells

3. Train a stronger forward model with the new data

a. If done correctly, ~30 epochs on new data should pass the baseline

source_lang = "zh",

target_lang = "en",

Links
Colab sample code

Kaggle sample code

JudgeBoi

https://colab.research.google.com/drive/1Tlyk2vCBQ8ZCuDQcCSEWTLzr1_xYF9CL?usp=sharing
https://www.kaggle.com/b08901046/hw05-sample-code
https://ml.ee.ntu.edu.tw/hw5/

Report

Report Overview

● Problem 1
○ Visualize the similarity between different pairs of positional

embedding and briefly explain the result.
● Problem 2

○ Clip gradient norm and visualize the changes of gradient norm in
different steps. Circle two places with gradient explosion.

Problem 1: Visualize Positional Embedding

Given a (N x D) positional embeding
lookup table, you aim to get a (N x N)
“similarity matrix” by calculating
similarity between different pairs of
embeddings in the table.

You need to visualize the similarity
matrix and briefly explain the result.

In this problem, we focus on the
positional embeddings of the decoder

Problem 1: Similarity Matrix

1 0.8 0.6 0.4 0.3

0.8 1 0.8 0.6 0.4

0.6 0.8 1 0.8 0.6

0.4 0.6 0.8 1 0.8

0.3 0.4 0.6 0.8 1

p1

p1 p2 p3 p4

p2

p3

p5

p4

p5

In the sence of encoding
positional information, we
expect that the similarity
between the embedding of
close positions is stronger.

Problem 1: Cosine Similarity

We recommend you to measure the similarity between two vectors by cosine
similarity.

There is a pytorch implementation of cosine similarity. Check more detail in the
following link.

https://pytorch.org/docs/stable/generated/torch.nn.functional.cosine_similarity.html

https://pytorch.org/docs/stable/generated/torch.nn.functional.cosine_similarity.html

Problem 1: Tips and Hint

You could get the positional embeddings of decoder by
following codes

pos_emb = model.decoder.embed_positions.weights.cpu().detach()

torch.Size([1026, 256])

Problem 2: Gradient Explosion

ICML 2013, Razvan Pascanu

宏毅老師講解 : ML2017 - RNN

Gradient Explosion

https://arxiv.org/abs/1211.5063
https://www.youtube.com/watch?v=rTqmWlnwz_0&t=576s

Problem 2: Clipping Gradient Norm
1. Set up a maximum norm value max_norm
2. Collecting the gradient of each parameters to be a vector. Calculate the

p-norm of the vector to be Lnorm
3. If Lnorm <= max_norm, do nothing. Otherwise calculate the scale factor

scale_factor = max_norm / Lnorm and multiply each gradient by the scale
factor.

p-norm 2-norm

Problem 2: Visualize Gradient Norm

Step1: Apply clips gradient norm and set max_norm = 1.0 .

Step2: Make a plot of “gradient norm v.s step”.
grad norm v.s. step

Problem 2: Visualize Gradient Norm

Step3: Circle two places with gradient explosion (where the
clip_grad_norm function take effect)

grad norm v.s. step

Pytorch: clip_grad_norm_()

https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

Problem 2: Overview
In this problem, you need to do

1. Plot the grad_norm
a. asd
b. asd
c. asd
d. asd
e. asd
f. asd
g. asd
h. asd

2. Circle two place with gradient explosion (if there is gradient explosion)

def train_one_epoch(epoch_itr, model, task, criterion, optimizer, accum_steps=1):
 .
 .
 .

 optimizer.multiply_grads(1 / (sample_size or 1.0)) # (sample_size or 1.0) handles
the case of a zero gradient
 gnorm = nn.utils.clip_grad_norm_(model.parameters(), config.clip_norm) # grad norm
clipping prevents gradient exploding -> this is the grad_norm for every step

JudgeBoi Guide

Previously... Github Account Survey
We have kindly requested everyone to report your github username and ID.

IMPORTANT: You must take this survey in order to submit to JudgeBoi server.

Step 1: Register for Submission
Go to JudgeBoi to login.

Step 2: Sign-in with Github

fill in username >

fill in password >

● If you have not completed the Github account
survey

○ You can log in
○ You will not be able to submit

Step 3: Submit your Results
You can now submit results to the server and view the leaderboard.

1) Click

3) Check the leaderboard

2) Submit results

Step 4: Select your submissions
● You can select up to 2 submissions.
● If none of your submissions is chosen, we will use the submission with the

best public score.
● If your selection is successful, you will see a message box as follows:

JudgeBoi Rules
● 5 submission quota per day, reset at midnight.

○ Users not in the whitelist will have no quota.
● Only *.txt file is allowed, filesize should be smaller than 700kB.
● The countdown timer on the homepage is for reference only.
● We do limit the number of connections and request rate for each IP.

○ If you cannot access the website temporarily, please wait a moment.
● The system can be very busy as the deadline approaches

○ If this prevents uploads, we do not offer additional opportunities for remediation
● Please do not attempt to attack JudgeBoi.
● Every Friday from 6:00 to 9:00 is our system maintenance time.
● For any JudgeBoi issues, please post on NTUCOOL discussion

○ Discussion Link: https://cool.ntu.edu.tw/courses/11666/discussion_topics/91777

https://ml.ee.ntu.edu.tw/whitelist/student.json
https://cool.ntu.edu.tw/courses/11666/discussion_topics/91777

Regulations and Grading Policy

Grading
● simple (public) +0.5 pts
● simple (private) +0.5 pts
● medium (public) +0.5 pts
● medium (private) +0.5 pts
● strong (public) +0.5 pts
● strong (private) +0.5 pts
● boss (public) +0.5 pts
● boss (private) +0.5 pts
● code submission +2 pts
● report +4 pts

Total : 10 pts

Code Submission

● NTU COOL (4pts)
○ Compress your code and report into

<student ID>_hwX.zip

* e.g. b06901020_hw1.zip

* X is the homework number

○ We can only see your last submission.
○ Do not submit your model or dataset.
○ If your code is not reasonable, your semester grade x 0.9.

Code Submission

● Your .zip file should include only
○ Code: either .py or .ipynb
○ Report: .pdf (only for those who got 10 points)

● Example:

Report Submission
Answer the questions on GradeScope

Deadlines
2022/04/08 23:59 (UTC+8)

Regulation
● You should NOT plagiarize, if you use any other resource, you should cite

it in the reference. (＊)
● You should NOT modify your prediction files manually.
● Do NOT share codes or prediction files with any living creatures.
● Do NOT use any approaches to submit your results more than 5 times a

day.
● Do NOT search or use additional data or pre-trained models.
● Your final grade x 0.9 if you violate any of the above rules.
● Prof. Lee & TAs preserve the rights to change the rules & grades.

If any questions, you can ask us via...

● NTU COOL (recommended)
○ https://cool.ntu.edu.tw/courses/4793

● Email
○ ntu-ml-2021spring-ta@googlegroups.com
○ The title should begin with “[hwX]” (X is the homework number)

● TA hour
○ Each Friday during class

https://cool.ntu.edu.tw/courses/4793
mailto:ntu-ml-2021spring-ta@googlegroups.com

