Homework 14
Regularization-based Lifelong Learning
ML TAs
ntu-ml-2022spring-ta@googlegroups.com
Machine Learning Exit Evaluation

Friendly reminder:

This questionnaire is only for educational analysis. Will never affect your grades, please fill in with peace of mind.

https://forms.gle/jAQPSoFQaoXcA22U6
Questionnaire of Education Course Series for AI Technologies and Applications

Friendly reminder:

This questionnaire is only for educational analysis. Will not be sent to school or teacher and will never affect your grades, all information is absolutely confidential, please fill in with peace of mind.

https://forms.gle/boFFRPwvyMeaExxB6
Outline

- Introduction
- Dataset
- Sample Code
- Grading
- Submission
Introduction - LifeLong Learning

Goal: A model can beat all task!
Introduction - LifeLong Learning

Condition: Model Sequentially Learn Different Task! (In Training Time)
Introduction - LifeLong Learning

KeyPoint: Avoid Catastrophic Forgetting

Catastrophic Forgetting

Avoid Catastrophic Forgetting
Introduction

Regularization term

\[L'(\theta) = L(\theta) + \lambda \sum b_i(\theta_i - \theta^b_i)^2 \]

Continual Learning Methods

- Replay-based methods
 - Rehearsal
 - iCaRL [122]
 - ER [126]
 - SER [63]
 - TEM [26]
 - Pseudo Rehearsal
 - DGR [139]
 - PR [13]
 - CCLUGM [81]
 - LGM [118]
 - Constrained
 - GEM [92]
 - AGEM [25]
 - GSS [9]

- Regularization-based methods
 - Prior-focused
 - EWC [69]
 - IMM [83]
 - SI [168]
 - RWC [90]
 - MAS [5]
 - Reumanian Walk [24]
 - Data-focused
 - LWF [85]
 - LFL [68]
 - EBLL [120]
 - DMC [169]

- Parameter isolation methods
 - Fixed Network
 - PackNet [96]
 - PathNet [38]
 - Piggyback [95]
 - HAT [136]
 - Dynamic Architectures
 - Progressive Networks [134]
 - ExpertGate [6]
 - RCL [160]
 - DAN [128]

In Sample Code:
Dataset

Rotated MNIST (Generated by TAs)
Sample Code - Training Details

- 5 task / Each task has 10 epoches for training.
- Each method cost ~20 minutes for training model. (Tesla T4)
- Each method cost ~60 minutes for training model. (Tesla K80)
- Colab link
Sample Code - Guideline

- Utilities
- Prepare Data
- Prepare Model
- Train and Evaluate
- Methods
- Plot function
Sample Code - Prepare Data

- Prepare Data
 - Rotation and Transformation
 - Dataloaders and Arguments
 - Visualization

5 tasks
Sample Code - Prepare Model

- Prepare Model
 - Model Architecture

Fixed model size!

```python
Model(
    (fc1): Linear(in_features=784, out_features=1024, bias=True)
    (fc2): Linear(in_features=1024, out_features=512, bias=True)
    (fc3): Linear(in_features=512, out_features=256, bias=True)
    (fc4): Linear(in_features=256, out_features=10, bias=True)
    (relu): ReLU()
)
```
Sample Code - Train and Evaluate

- **Train:**
 - Sequentially train.
 - Add regularization term and update it.

- **Evaluate:**
 - Evaluate by using a special metric.
 - (Please read sample code and describe it in your report.)
Sample Code - Before Going to Methods

Training Pipeline:

Task Data

Lifelong Class (baseline, ewc, mas, si, rwalk, scp ..)

Model

Each Task

train
Evaluate

Change Task
Sample Code - Before Going to Methods

```python
class baseline(object):
    ***
    baseline technique: do nothing in regularization term [initialize and all weight is zero]
    ***
    def __init__(self, model, dataloaders, device):
        self.model = model
        self.dataloaders = dataloaders
        self.device = device
        self.params = {n: p for n, p in self.model.named_parameters() if p.requires_grad} # extract all parameters in models
        self.p_old = {} # store current parameters
        self.precision_matrices = self._calculate_importance() # generate weight matrix
        for n, p in self.params.items():
            self.p_old[n] = p.clone().detach() # keep the old parameter in self.p_old
        def _calculate_importance(self):
            precision_matrices = {}
            for n, p in self.params.items(): # initialize weight matrix (fill zero)
                precision_matrices[n] = p.clone().detach().fill_(0)
            return precision_matrices
        def _penalty(self, model: nn.Module):
            loss = 0
            for n, p in model.named_parameters():
                loss = self.precision_matrices[n] * (p - self.p_old[n])**2
                loss += loss.sum()
            return loss
        def update(self, model):
            # do nothing
            return
```
Sample Code - Before Going to Methods

```python
class baseline(object):
    def __init__(self, model, dataloaders, device):
        self.model = model
        self.dataloaders = dataloaders
        self.device = device

        self.params = {n: p for n, p in self.model.named_parameters() if p.requires_grad} # extract all parameters in models
        self.p_old = {} # store current parameters
        self.precision_matrices = self._calculate_importance() # generate weight matrix

        for n, p in self.params.items():
            self.p_old[n] = p.clone().detach() # keep the old parameter in self.p_old

    def calculate_importance(self):
        precision_matrices = {} # initialize weight matrix (fill zero)
        precision_matrices[n] = p.clone().detach().fill_(0)
        return precision_matrices

    def penalty(self, model: nn.Module):
        loss = 0
        for n, p in model.named_parameters():
            loss += self.precision_matrices[n] * (p - self.p_old[n])**2
        return loss

    def update(self, model):
        # do nothing
        return
```
Sample Code - Methods

- Baseline (Do nothing in regularization term)
- EWC
- MAS
- SI
- RWalk
- SCP
EWC - Elastic Weight Consolidation

1. You need to know how to generate Guardiance weight from EWC!
2. Do this method need to use label?
3. Hint: (Trace the class ewc and its calculate_importance function)

Paper Link: https://arxiv.org/abs/1612.00796
MAS - Memory Aware Synapse

1. You need to know how to generate Guardiance weight from MAS!
2. Do this method need to use label?
3. We want you to implement Omega Matrix for MAS! Please read page 21 carefully and paste your code (only TODO block) in report.

Please do not modify any part of the sample code except the TODO block.

Paper Link: https://arxiv.org/abs/1711.09601
MAS - Memory Aware Synapse

- The method proposed in the paper is the local version by taking squared L2-norm outputs from each layer of the model.
- Here we only want you to implement the global version by taking outputs from the last layer of the model.
- Hint: (It is similar to the way you generate the Fisher matrix for EWC, the only difference is the calculation of the important weight.)

\[\mathcal{L}_B = \mathcal{L}(\theta) + \sum_i \frac{\lambda}{2} \Omega_i (\theta_i - \theta^*_{A,i})^2 \]

\[\Omega_i = \| \frac{\partial \ell^2(M(x_k; \theta))}{\partial \theta_i} \| \]

You need to know how to generate Guardiance weight from SI!
Do this method need to use label?
Hint: (Accumulated loss change in each update step)

SI - Main Idea

\[L(\theta) = L_2(\theta) + c \sum_i \Omega_i (\theta_i - \theta_{1,i}^*)^2 \]

From learning trajectory

Parameter importance on-line from learning trajectory!

Picture comes from: Talk Slide
Leveraging per-parameter importance for continual learning

\[L(\theta) = L_2(\theta) + c \sum_i \Omega_i (\theta_i - \theta_{1,i}^*)^2 \]

\[\Omega_i \equiv \frac{\omega_i}{(\Delta_i)^2 + \epsilon} \]

Loss on Task 1: \(L_1\)

Surrogate loss (\(c = 1\))

Picture comes from: Talk Slide
SI - Main Idea

Total change in loss is given by the path integral over the gradient field

\[\int_C g(\theta(t))d\theta = \int_{t_0}^{t_1} g(\theta(t)) \cdot \theta'(t)dt = L(t_1) - L(t_0) \]

\[= \sum_k \int_{t_0}^{t_1} g_k(t)\theta'_k(t)dt \equiv -\sum_k \omega_k \]

- Is a parameter-specific quantity
- Can be computed on-line during training (running sum)

Natural way of assigning credit for a global change to local parameters

\[L(t_1) - L(t_0) = -\sum_k \omega_k' \]

\(g \): Gradient
\(\theta \): Parameters
\(\theta' \): Updates

Picture comes from: Talk Slide
RWalk - Remanian Walk

1. Trace Rwalk class and its update function!
2. Do this method need to use label?
3. Hint: (The code is similar to two method which mentioned in sample code)

Paper Link: https://arxiv.org/abs/1801.10112
SCP - Sliced Cramer Preservation

1. Paper Link: https://openreview.net/pdf?id=BJge3TNKwH

2. Do this method need to use label?
SCP - Main Idea

- Propose Distributed-based Distance to prevent fast intransigence and avoid overestimating the importance of parameters.

Model do not want to learn new task, and it just keep old task performance
Other Methods and Scenarios

- Only in Multiple Choice Questions
Grading

● 20 multiple choice questions (**8pts, 0.4pt each**)
● Report (**2pts**)
● You have to choose ALL the correct answers for each question
● No leaderboards are needed!!
Grading - Multiple Choice Questions

- 20 multiple choice questions (**8pts, 0.4pt each**)
 - Basic Concept: 3 Questions
 - EWC: 2 Questions
 - MAS: 2 Questions
 - SI: 2 Questions
 - RWalk: 2 Questions
 - SCP: 3 Questions
 - Other Methods & scenarios: 6 Questions
 - ICaRL, LwF, GEM, DGR
 - Three Scenarios
Grading - Report

- Plot the learning curve of the metric with every method. (The Plotting function is provided in the sample code.) \(0.5pt\)
- Describe the metric. \(0.5pt\)
- Paste the code that you implement Omega Matrix for MAS. \(1pt\)

Please do not modify any part of the sample code except the TODO block.

Please just paste the TODO block.

If you plot the right learning curve, you will still get the point of the first part no matter whether you implement Omega Matrix for MAS or not.
Submission

- The questions are on gradescope
- Submit your report to gradescope
- Running the code may need some time!
- You can answer the questions unlimited times
- The length of answering time of the assignment is unlimited
- We will consider the latest submission as the final score
- You will see the scores after the deadline only!
- **No late submission!**
- **Remember to save the answer when answering the questions!**
- Deadline: **2022/06/24 23:59**
Link

- Code: Colab
If any questions, you can ask us via...

- NTU COOL (Recommended)
- Email
 - mlta-2022-spring@googlegroups.com
 - The title should begin with “[hw14]”
- TA hour
 - Tuesday, 20:00 ~ 21:00
 - Friday, 15:00 ~ 17:00