More about Meta Learning

Hung-yi Lee

Prerequisite

https://youtu.be/xoastiYx9JU

https://youtu.be/Q68Eh-wm1Ts

Outline

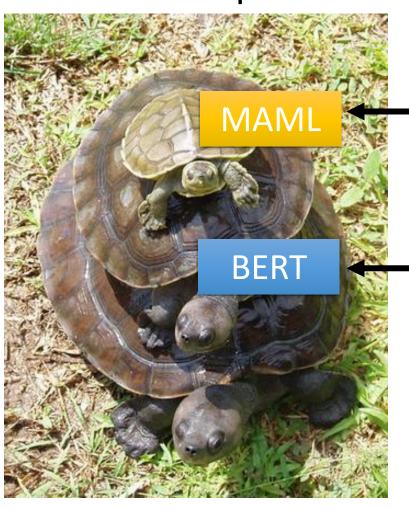
- Meta Learning vs. Self-supervised Learning
- Meta Learning vs. Domain Generalization
- Meta Learning vs. Knowledge Distillation
- Meta Learning vs. Life-long Learning

Self-supervised Learning (BERT and pals)

Learn to Init (MAML family)

- MAML learns the initialization parameter ϕ by gradient descent
- What is the initialization parameter ϕ^0 for ϕ ?

BERT can serve as ϕ^0



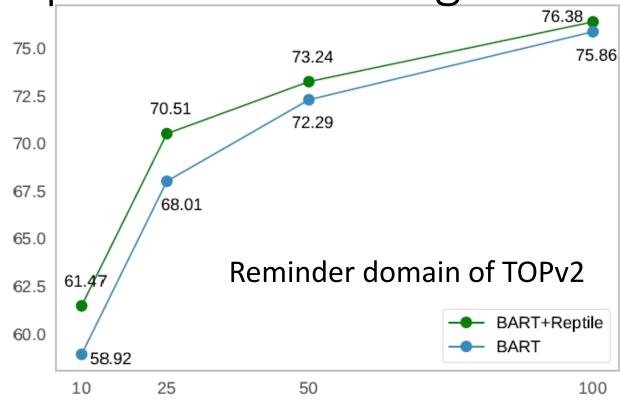
Learn to achieve good performance on training tasks.

Leverage training tasks.

 The self-supervised objectives are different from downstream tasks.

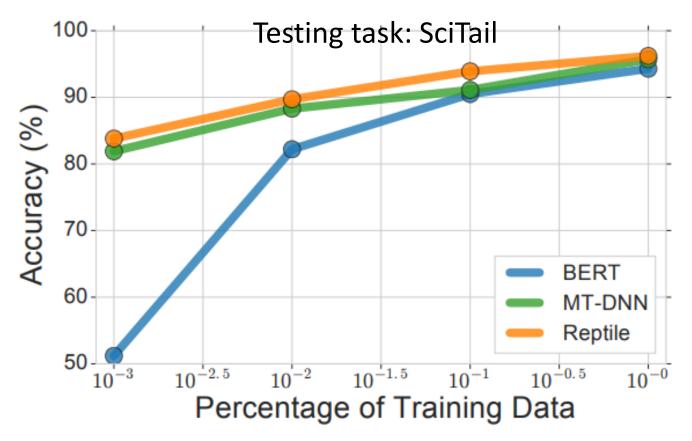
There is a "learning gap".

 Utilize a large amount of unlabeled data



SPIS = samples per intent and slot

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, Sonal Gupta, Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing, EMNLP, 2020



Zi-Yi Dou, Keyi Yu, Antonios Anastasopoulos, Investigating Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks, EMNLP 2019

Work	Method	How to Initailize the Initailization
(Bansal et al., 2020a)	LEOPARD	BERT
(Li et al., 2020a)	MAML	Word Embedding
(Park et al., 2021)	MAML	XLM
(Gu et al., 2018)	FOMAML	Word Embedding
(Langedijk et al., 2021)	FOMAML	mBERT
(Chen et al., 2020b)	Reptile	BART
(Huang et al., 2020a)	MÂML	BERT
(Wang et al., 2021b)	Propose a new method based on Reptile	Word Embedding
(Dingliwal et al., 2021)	Reptile	RoBERTa
(Qian and Yu, 2019)	MÂML	Word Embedding
(Qian et al., 2021)	MAML	Word Embedding
(Madotto et al., 2019)	MAML	Word Embedding
(Dai et al., 2020)	MAML	-
(Hsu et al., 2020)	FOMAML	Multilingual ASR
(Xiao et al., 2021)	MAML/FOMAML/Reptile	-
(Winata et al., 2020b)	MAML	Pretrain by Supervised Learning
(Klejch et al., 2019)	FOMAML	-
(Huang et al., 2021)	MAML/FOMAML	-
(Indurthi et al., 2020)	FOMAML	-
(Winata et al., 2020a)	FOMAML	-
(Wu et al., 2021b)	MAML	Pretrain by Multi-task Learning
(Ke et al., 2021)	MAML	BERT
(Xia et al., 2021)	MetaXL	mBERT/XLM-R
(Dou et al., 2019)	MAML/FOMAML/Reptile	BERT
(Obamuyide and Vlachos, 2019b)	FOMAML	Word Embedding
(Lv et al., 2019)	MAML	-
(Holla et al., 2020)	FOMAML/Proto(FO)MAML	Word Embedding/ELMo/BERT
(Huang et al., 2020b)	MAML	Word Embedding
(Mi et al., 2019)	MAML	-
(Wang et al., 2021a)	DG-MAML	BERT
(Conklin et al., 2021)	DG-MAML	-
(M'hamdi et al., 2021)	MAML	mBERT
(Nooralahzadeh et al., 2020)	MAML	BERT/mBERT/XLM-R
(Garcia et al., 2021)	MAML	mBERT
(van der Heijden et al., 2021)	FOMAML/Reptile/Proto(FO)MAML	XLM-R
(Bansal et al., 2020b)	LEOPARD	BERT
(Murty et al., 2021)	FOMAML	BERT
(Hua et al., 2020)	Reptile	-
(Yan et al., 2020)	MÅML	BERT/RoBERTa
(Wang et al., 2019b)	Reptile	-
(Bose et al., 2020)	Meta-Graph	-

https://arxiv.org/abs/ 2205.01500

Meta Learning vs. Knowledge Distillation

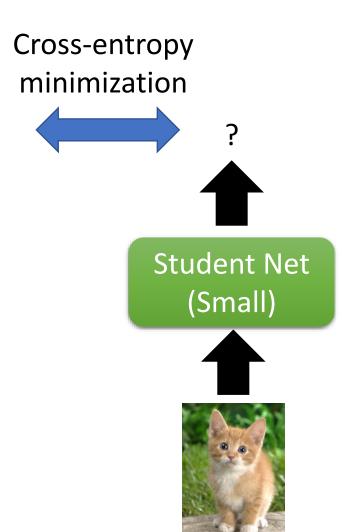
Knowledge Distillation

Learning target

"cat": 0.8, "dog": 0.2 ...

Teacher Net (Large)

The teacher is not optimized for teaching.



Knowledge Distillation

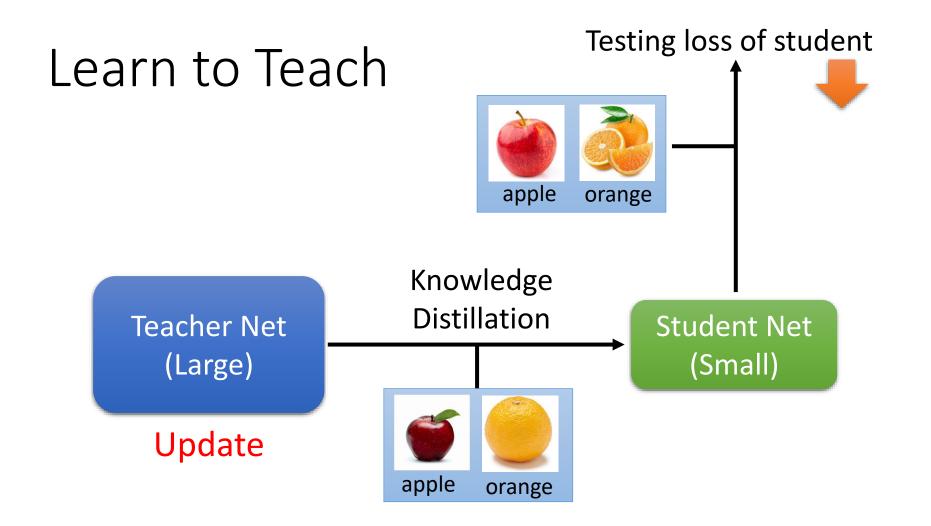
Table 1. Knowledge distillation is not compatible with strong augmentation. (Das et al., 2020; Cui & Yan, 2021)

Augmentation	Teacher acc.	Student acc.
Normal	73.3	70.4
LabelSmooth (Szegedy et al., 2016)	73.3	68.1
Mixup (Zhang et al., 2017)	74.3	67.9
CutMix (Yun et al., 2019)	76.0	68.8

Table 2. Knowledge distillation suffers from teacher-student gap. (Mirzadeh et al., 2020; Cho & Hariharan, 2019)

Teacher	Teacher acc.	Student (ResNet20) acc.
ResNet32 (He et al., 2016)	71.0	70.8
ResNet56 (He et al., 2016)	73.3	70.4
ResNet110 (He et al., 2016)	75.4	70.5
ResNet164 (He et al., 2016)	75.8	69.9

Can the teacher-network "learn to teach"?

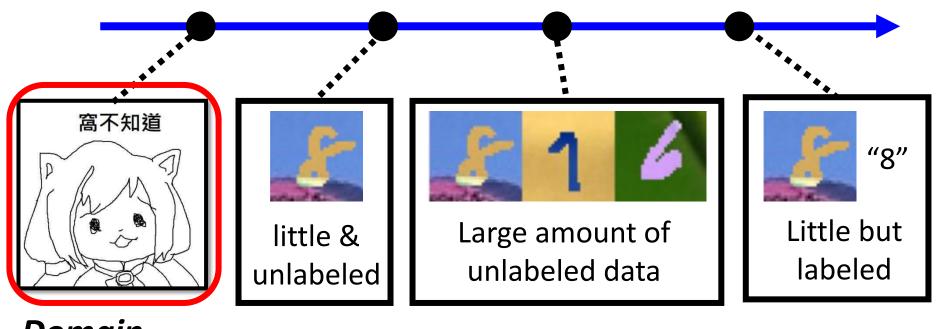


Wangchunshu Zhou, Canwen Xu, Julian McAuley, BERT Learns to Teach: Knowledge Distillation with Meta Learning, ACL, 2022 Jihao Liu, Boxiao Liu, Hongsheng Li, Yu Liu, Meta Knowledge Distillation, arXiv, 2022

Meta Learning vs. Domain Adaptation

Domain Adaptation

Knowledge of target domain



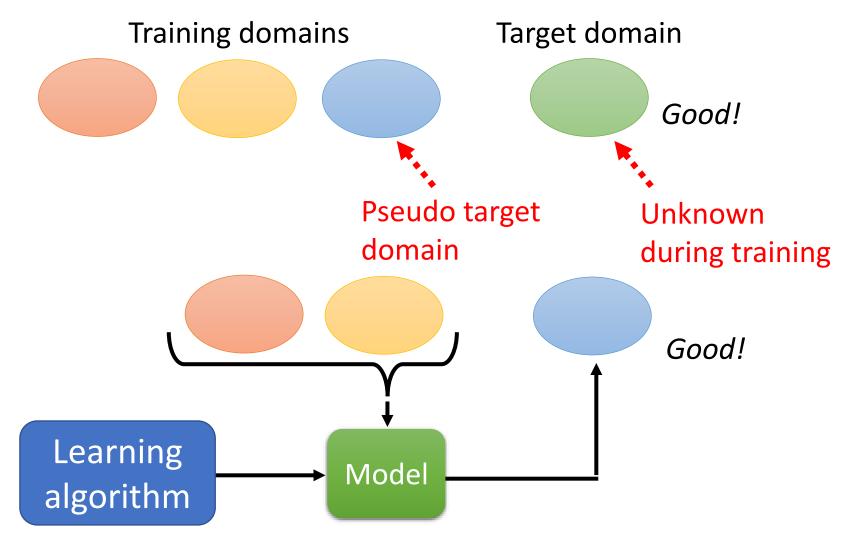
<u>Domain</u> Generalization

Meta Learning for Domain Generalization



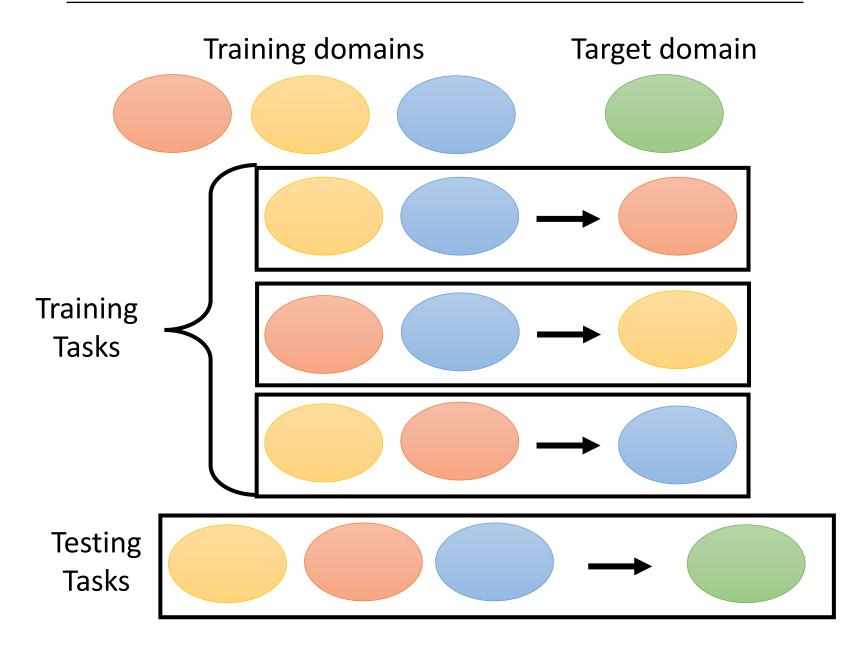
How to train it?

Meta Learning for Domain Generalization



e.g., initialization

Meta Learning for Domain Generalization



Example – Text Classification

Goal: {EN,FR,DE}->JA Meta train Task1: {EN, FR}->DE Task2: {EN, DE}->FR MGL Task3: {FR, DE}->EN Meta test Test task: {EN,FR,DE}->JA Metric-based EN FR DE JA Approach language class

Zheng Li, Mukul Kumar, William Headden, Bing Yin, Ying Wei, Yu Zhang, Qiang Yang, Learn to Cross-lingual Transfer with Meta Graph Learning Across Heterogeneous Languages, EMNLP, 2020

Problem of another level

 The training examples and testing examples may have different distributions.

 The training tasks and testing tasks can also have different distributions.

> Training Tasks

Tasks

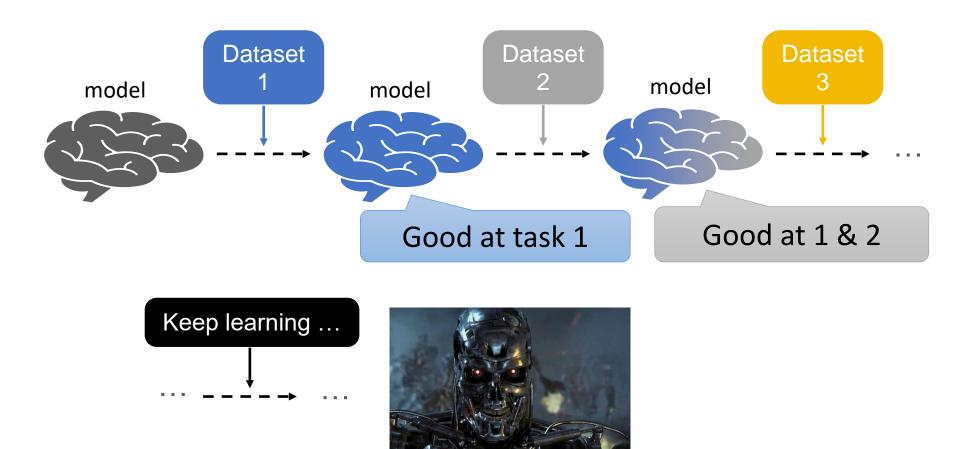
Testing

Meta learning itself also needs domain adaptation.

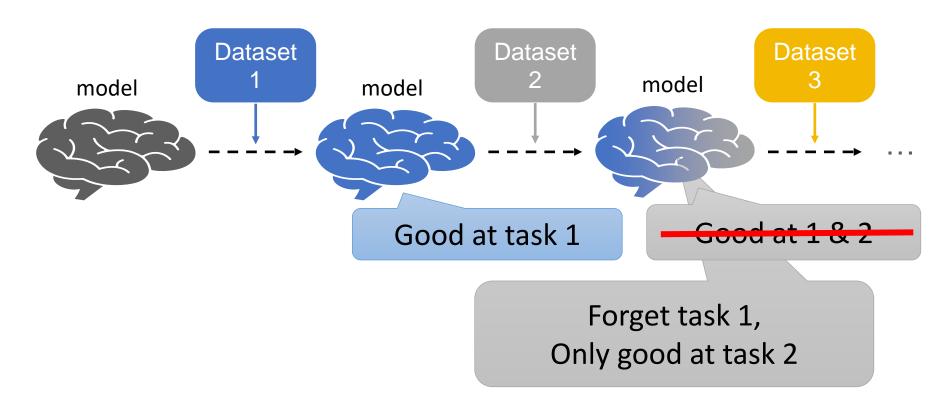
Huaxiu Yao, Longkai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, Zhenhui Li, Improving generalization in meta-learning via task augmentation, ICML, 2021

Meta Learning vs. Life-long Learning

Lifelong Learning Scenario



Lifelong Learning Scenario



Catastrophic forgetting!

Mitigating Catastrophic Forgetting

Selective Synaptic Plasticity

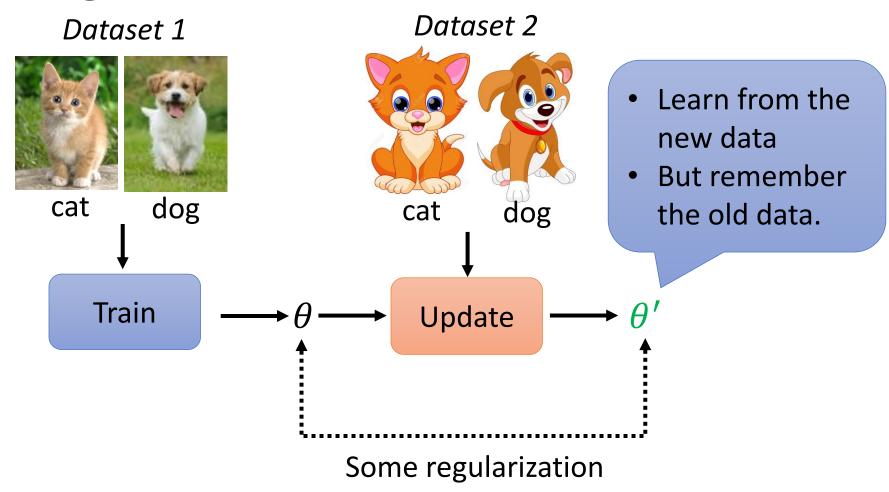
Regularization - based

Additional Neural Resource Allocation

Memory Replay

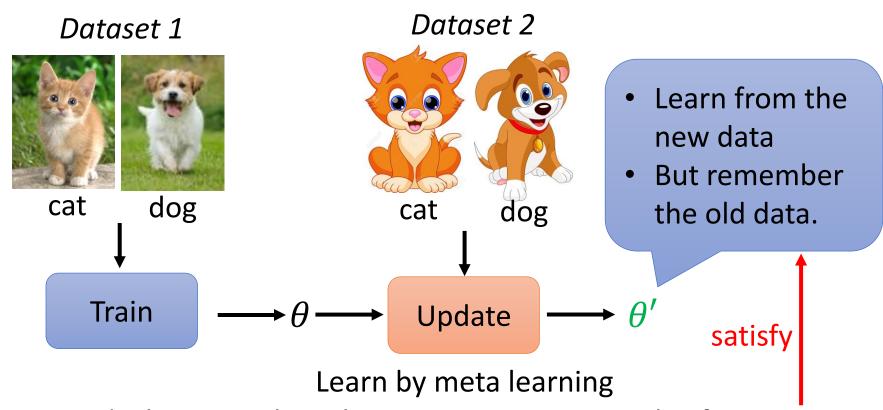
- There are already lots of research along each direction.
- Can meta learning enhance these approaches?

Regularization-based



L2 does not work. For prevent forgetting: EWC, SI, MAS

Regularization-based + Meta

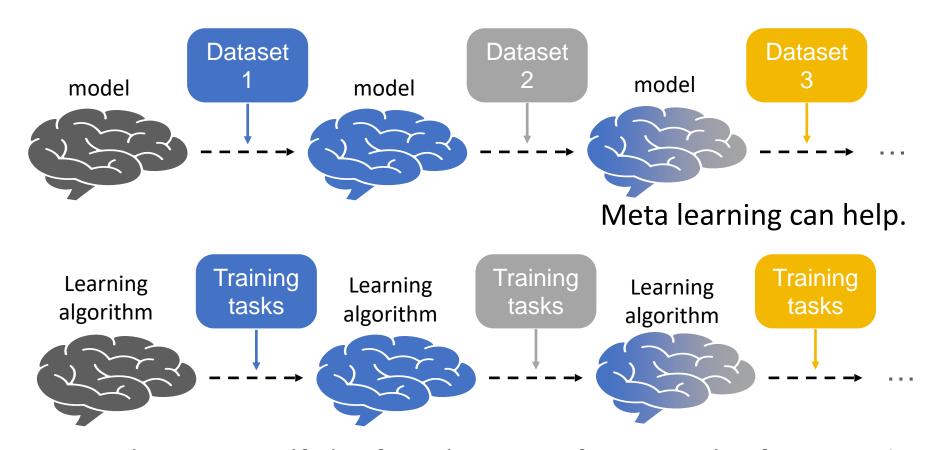


Find a learning algorithm to prevent catastrophic forgetting.

Nicola De Cao, Wilker Aziz, Ivan Titov, Editing Factual Knowledge in Language Models, EMNLP, 2021

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, Artem Babenko, Editable Neural Networks, ICLR, 2020

Problem of Another Level



Meta learning itself also face the issue of catastrophic forgetting!

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine, Online Meta-Learning, ICML, 2019

Pauching Yap, Hippolyt Ritter, David Barber, Addressing Catastrophic Forgetting in Few-Shot Problems, ICML, 2021

Concluding Remarks

- Meta Learning vs. Self-supervised Learning
- Meta Learning vs. Domain Generalization
- Meta Learning vs. Knowledge Distillation
- Meta Learning vs. Life-long Learning

To Learn More

Meta Learning for Natural Language Processing: A Survey

Hung-yi Lee National Taiwan University

hungyilee@ntu.edu.tw

Shang-Wen Li Amazon AI*

shangwel@amazon.com

Ngoc Thang Vu University of Stuttgart

thangvu@ims.uni-stuttgart.de

https://arxiv.org/abs/2205.01500

2022 Eighth Frederick Jelinek Memorial Summer Workshop

The application for the undergraduate research internships will be available on February 10th. Please read the "Al Research Internships for Undergraduates" for more information

The Workshop June 27 to August 5, 2022

About the Eighth Frederick Jelinek Memorial Summer Workshop

The JSALT 2022 Program

JHU Summer School on Human Language Technology (June 13 June 24)

Opening Day Presentations Schedule (June 27) 11:10 p.m. (GMT+8)

Plenary Lectures by Invited Speakers (June 29, July 6, 13, 20, 27)

Closing Day Presentations (August 4 and 5)

Research Groups

- Speech Translation for Under-Resourced Languages
- Multilingual and Code-Switching Speech Recognition
- · Leveraging Pre-Training Models for Speech Processing

Thanks for supporting computing resources!