自督導式學習的神奇能力

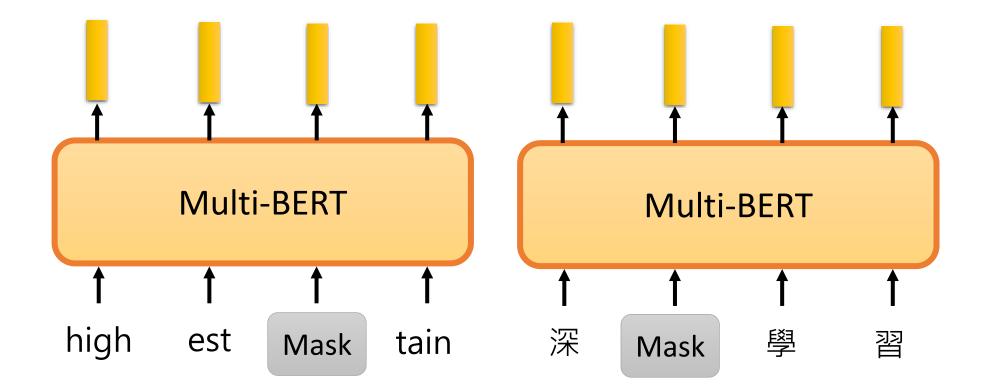
Outline

Story 1: Cross-lingual

Story 2: Cross-discipline

Story 3: Pre-training without Human Languages

Multi-lingual BERT



Training a BERT model by many different languages.

Zero-shot Reading Comprehension

Training on the sentences of 104 languages Doc2 Doc1 Doc1 Query1 Query2 Query1 20 ns2 Ans Doc3 Doc3 Query3 Query3 NNS Doc5 Doc4 Doc2 Query5 Query4 Query2 Ans5 Ans4 ? Train on English QA Test on Chinese training examples QA test **Multi-BERT**

Zero-shot Reading Comprehension

• English: SQuAD, Chinese: DRCD

Model	Pre-train	Fine-tune	Test	EM	F1
QANet	none	Chinese		66.1	78.1
	Chinese	Chinese		82.0	89.1
DEDT	101	Chinese	Chinese	81.2	88.7
BERT	104 languages	English		63.3	78.8
	languages	Chinese + English		82.6	90.1

F1 score of Human performance is 93.30%

This work is done by 劉記良、許宗嫄 https://arxiv.org/abs/1909.09587

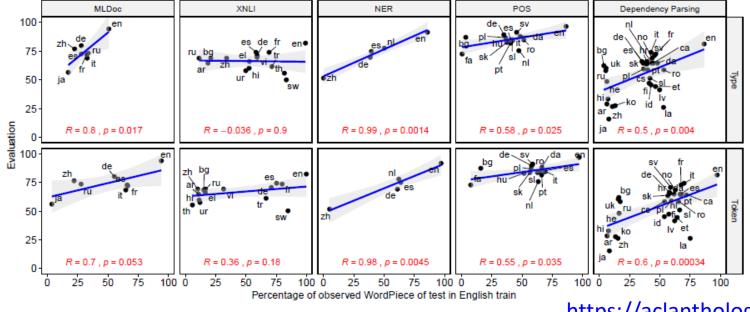
So many evidences

Fine-tuning \setminus Eval	EN	DE	NL	ES	Fine-tuning \ Eval	EN	DE	ES	IT
EN	90.70	69.74	77.36	73.59	EN	96.82	89.40	85.91	91.60
DE	73.83	82.00	76.25	70.03	DE	83.99	93.99	86.32	88.39
NL	65.46	65.68	89.86	72.10	ES	81.64	88.87	96.71	93.71
ES	65.38	59.40	64.39	87.18	IT	86.79	87.82	91.28	98.11

Table 1: NER F1 results on the CoNLL data.

Table 2: POS accuracy on a subset of UD languages.

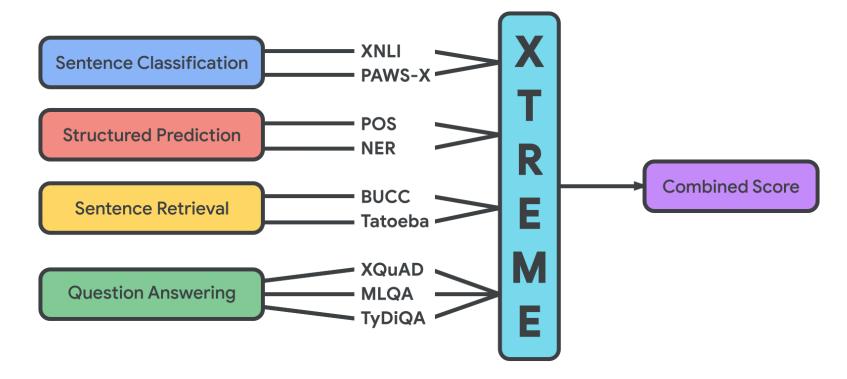
https://aclanthology.org/P19-1493/



https://aclanthology.org/D19-1077/

Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark

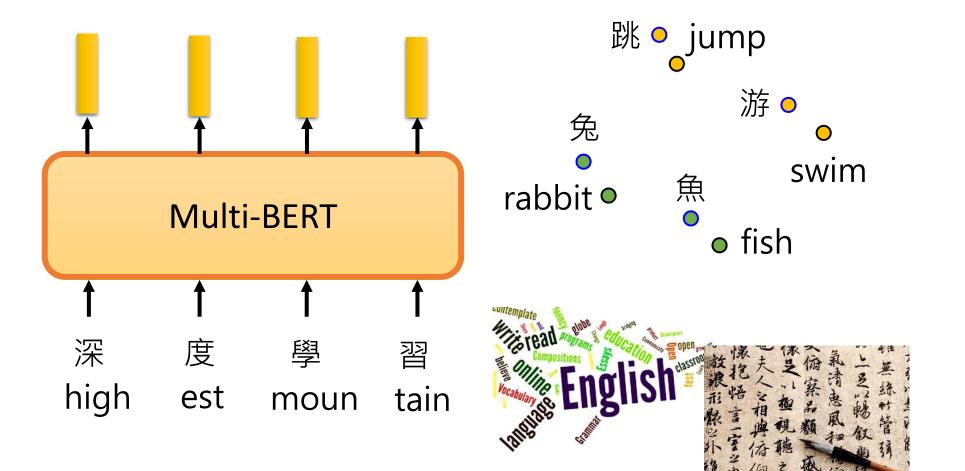
https://sites.research.google/xtreme



40 languages for 9 tasks

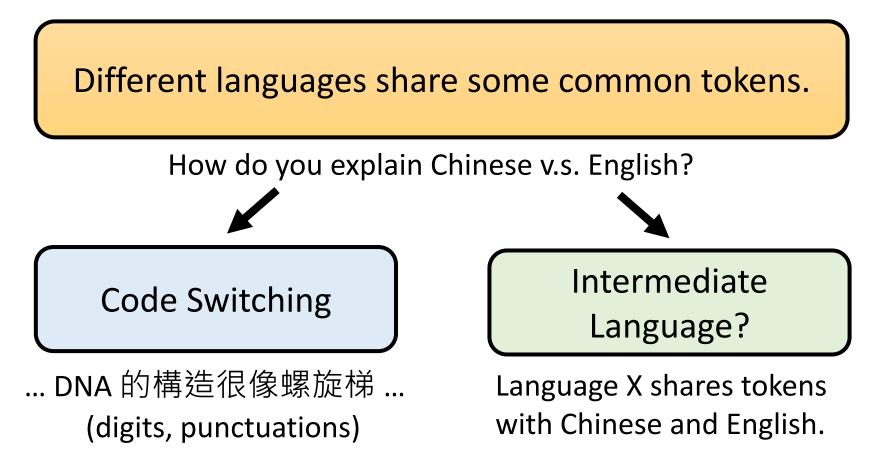
Train on English, and test on the rest

Cross-lingual Alignment?



How alignment happens?

• Typical answer



How alignment happens?

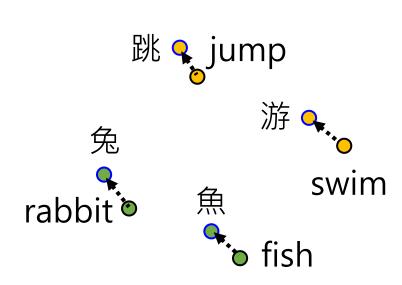
https://openreview.net/forum?id=HJeT3yrtDr

				XNLI	NER
B-BERT	Train	Test	Accuracy	Wordpiece Contribution	Span F1-Score
en-es enfake-es	en enfake	es	72.3 70.9	1.4	61.9 (±0.8) 62.6 (±1.6)
en-hi enfake-hi	en enfake	hi	60.1 59.6	0.5	61.6 (±0.7) 62.9 (±0.7)
en-ru enfake-ru	en enfake	ru	66.4 65.7	0.7	57.1* (±0.9) 54.2 (±0.7)
en-enfake en-enfake	enfake enfake	enfake en	78.0 77 . 5	0.5	$78.9^{*}(\pm 0.7)$ $76.6(\pm 0.8)$

English:the cat is a good catFake-English:甲 乙 天 地 人 乙

https://arxiv.org/abs/2010.10041

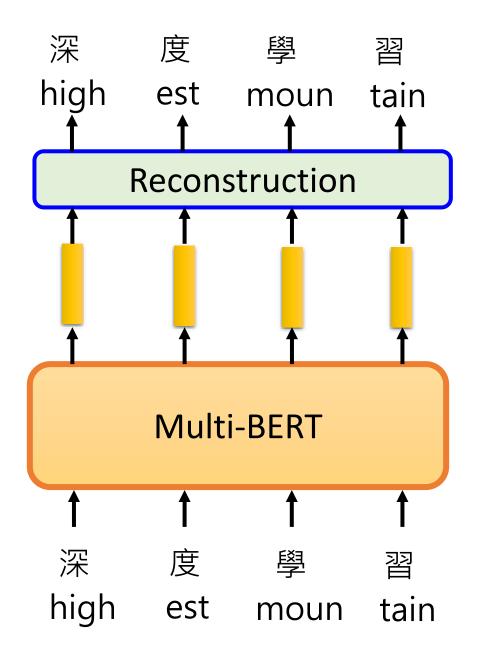
Weird???

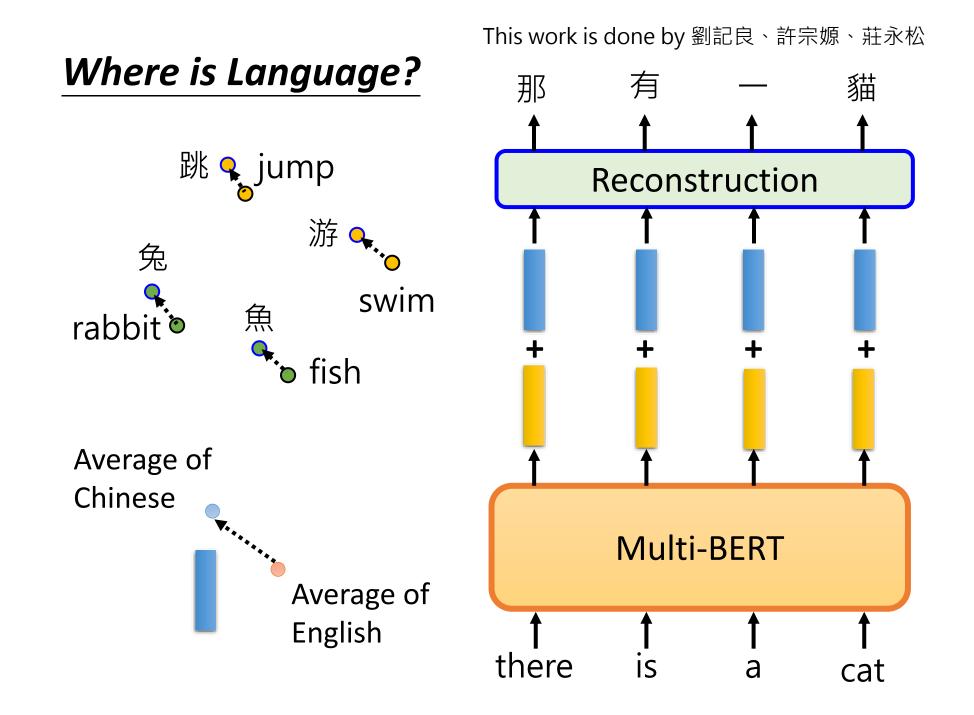


If the embedding is language independent ...

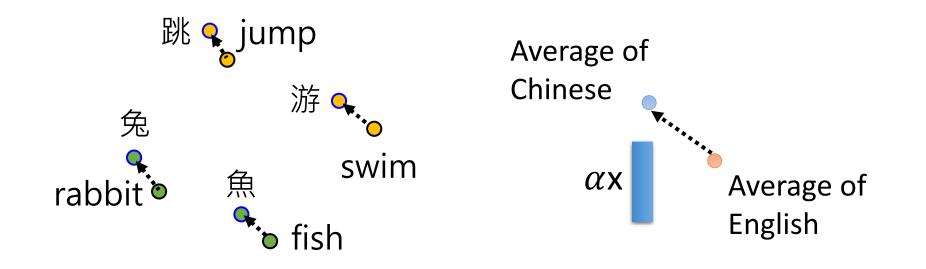
How to correctly reconstruct?

There must be language information.





This work is done by 劉記良、許宗嫄、莊永松 If this is true ... https://arxiv.org/abs/2010.10041



Input (en) | The girl that can help me is all the way across town. There is no one who can help me.

Ground Truth (zh)	能帮助我的女孩在小镇的另一边。没有人能帮助我。。
	. 孩, can 来我是all the way across 市。。There 是无人人can help 我。
	. 孩的的家我是这个人的市。。他是他人人的到我。
en>zh, $\alpha = 3$	。, 的的的他是的个的的, 。: 他是他人, 的。他。

Unsupervised token-level translation ③

This work is done by 劉記良、許宗嫄、莊永松 https://arxiv.org/abs/2010.10041

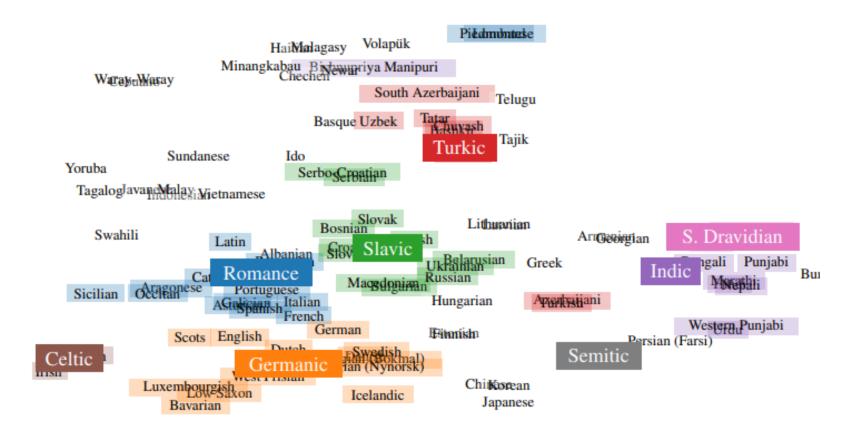
	en→de	en→fr	en→ur	en→sw	en→zh	en→el	de→en	fr→en	ur→en	sw→en	zh→en	el→en
BLEU-1 (α =1) BLEU-1 (α =2) BLEU-1 (α =3)	7.53 8.03 12.35	10.24	6.31	7.23	21.51	14.91	7.48	8.52	6.23	7.48	5.38	6.65
convert rate (α =1) convert rate (α =2) convert rate (α =3)	74.8	75.7	99.4	97.4	90.0	99.1	67.3	601	83.0	65.6	60.8	97.9

Table 1: Unsupervised Token Translation quantitative results using the 10-th layer of BERT.

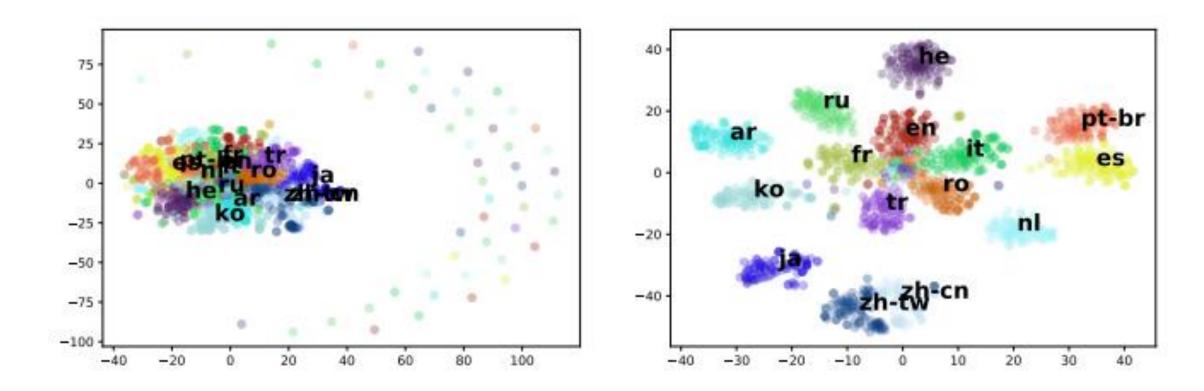
Input (en) | The girl that can help me is all the way across town. There is no one who can help me.

Ground Truth (zh)	能帮助我的女孩在小镇的另一边。没有人能帮助我。。
en>zh, $\alpha = 1$. 孩, can 来我是all the way across 市。。There 是无人人can help 我。
en>zh, $\alpha = 2$. 孩的的家我是这个人的市。。他是他人人的到我。
en>zh, $\alpha = 3$	。,的的的他是的个的的,。: 他是他人,的。他。

Unsupervised token-level translation ③

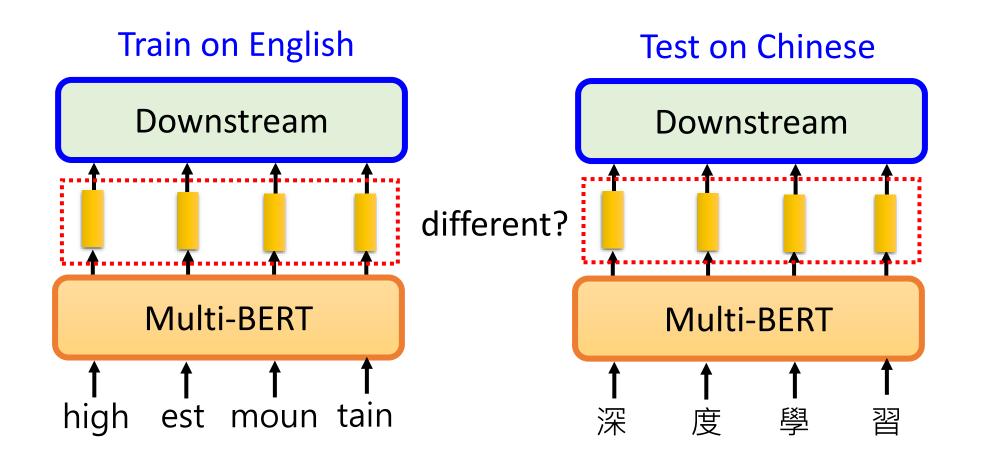


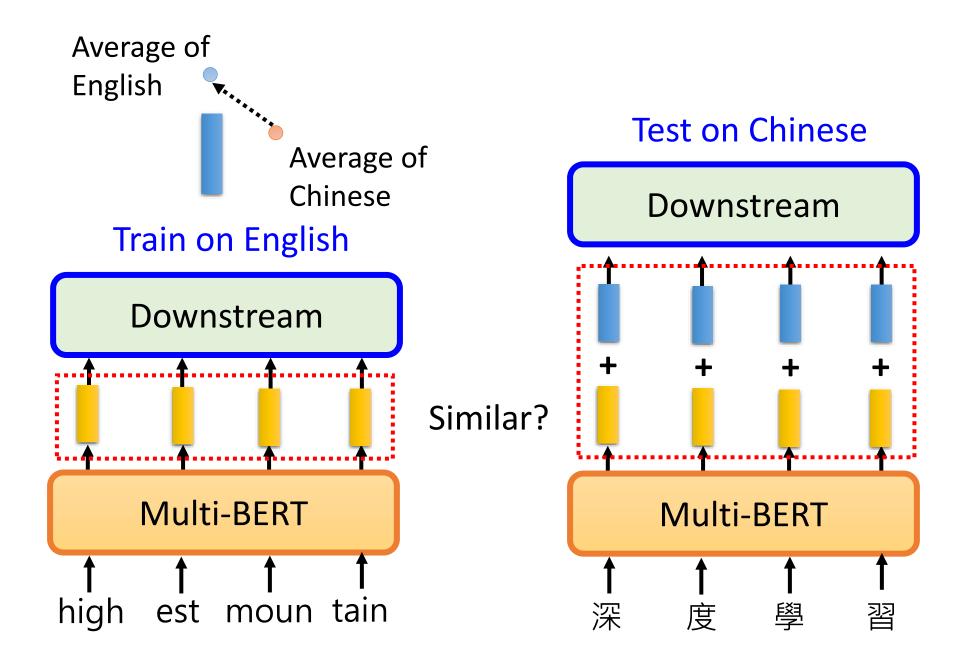
On the Language Neutrality of Pre-trained Multilingual Representations https://arxiv.org/abs/2004.05160



It's not Greek to mBERT: Inducing Word-Level Translations from Multilingual BERT https://arxiv.org/abs/2010.08275

Zero-shot Cross-lingual Transfer





Experimental Results

Table 4: POS tagging results

Method	ar	bg	de	el	es	fr	hi	ru	th	tr	ur	vi	zh	Average
Original Zero-mean MDS	54.3	86.1	86.6	81.8	86.6	43.7	68.1	86.5	41.6	69.7	56.6	53.4	62.5	

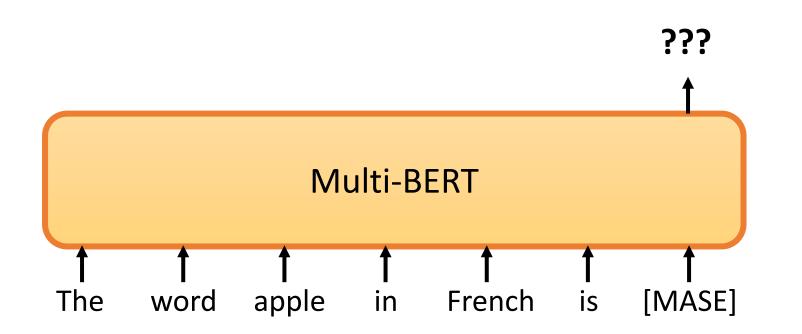
Table 5: Dependency parsing results. Numbers are Labeled Attachment Score(LAS).

Method	ar	bg	de	el	es	fr	hi	ru	th	tr	ur	vi	zh Average
Zero-mean	28.2	71.0	73.4	71.4	72.2	75.7	36.3	69.3	32.5	34.6	28.6	37.0	35.4 50.8 35.2 51.2 35.0 50.8

You just have to ask

It's not Greek to mBERT: Inducing Word-Level Translations from Multilingual BERT https://arxiv.org/abs/2010.08275

	@1	@10	@100
Baseline	0.036	0.244	0.575
Analogies	0.105	0.463	0.737
Template	0.449	0.703	0.845



Outline

Story 1: Cross-lingual

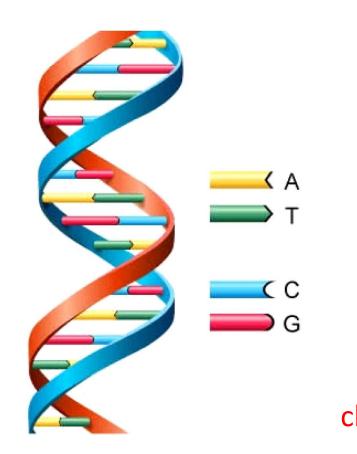
Story 2: Cross-discipline

Story 3: Pre-training without Human Languages

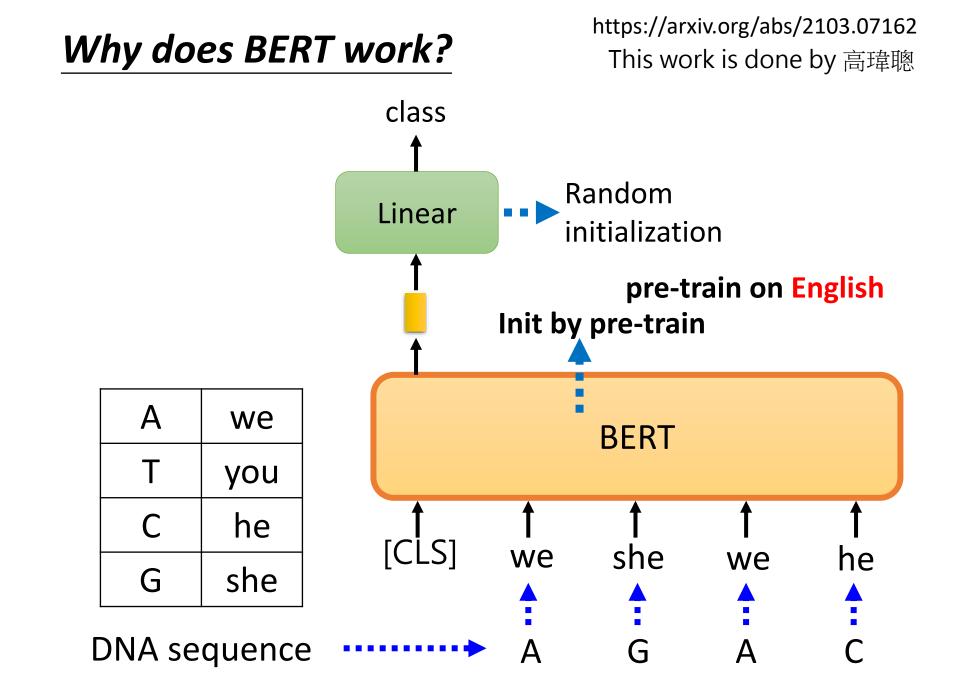
https://arxiv.org/abs/2103.07162 This work is done by 高瑋聰

Why does BERT work?

• Applying BERT to protein, DNA, music classification



CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTC⁻ FI AGACCCGCCGGGAGGCGGAGGACCTGCAGGGT FΙ AACGTGGCCTCCTTGTGCCCTTCCCCACAGTGCCC IE IE CCACTCAGCCAGGCCCTTCTTCTCCTCCAGGTCCC CCTGATCTGGGTCTCCCCTCCCACCCTCAGGGAGC IE IE AGCCCTCAACCCTTCTGTCTCACCCTCCAGCCTAA CCACTCAGCCAGGCCCTTCTTCTCCTCCAGGTCCC IE Ν CTGTGTTCACCACATCAAGCGCCGGGACATCGTGC GTGTTACCGAGGGCATTTCTAACAGTCTTCTTACTA Ν TCTGAGCTCTGCATTTGTCTATTCTCCAGCTGACCC Ν class **DNA** sequence

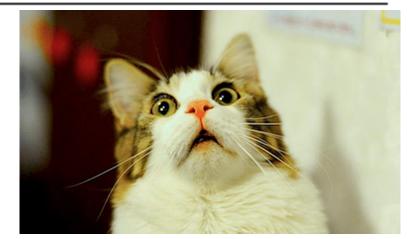


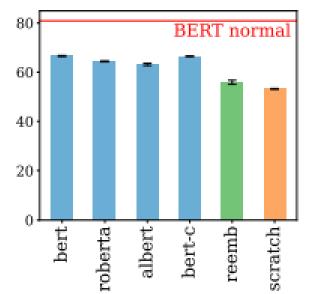
https://arxiv.org/abs/2103.07162 This work is done by 高瑋聰

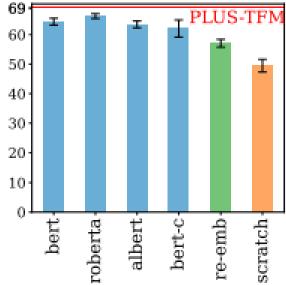
Why does BERT work?

• Applying BERT to protein, DNA, music classification

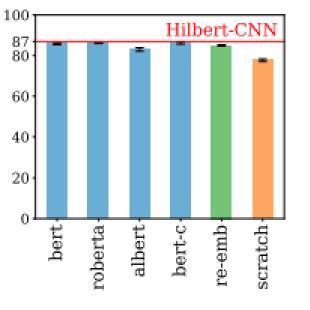
		Protein				DNA		Music
	localization	stability	fluorescence	H3	H4	H3K9ac	Splice	composer
specific	69.0	76.0	63.0	87.3	87.3	79.1	94.1	-
BERT	64.8	74.5	63.7	83.0	86.2	78.3	97.5	55.2
re-emb	63.3	75.4	37.3	78.5	83.7	76.3	95.6	55.2
rand	58.6	65.8	27.5	75.6	66.5	72.8	95	36



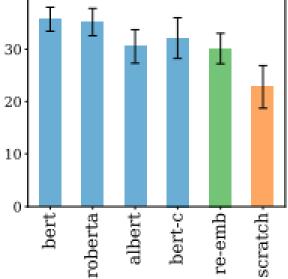




(a) Synthetic GLUE (8 tasks)



(b) Protein (3 tasks)

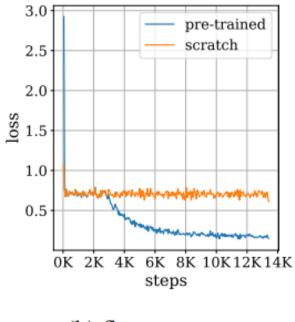


	Flu.	Stab.	Loc.
BERT - PLUS	0.729	0.634	0.504
BERT - random	0.598	0.545	0.362
PLUS - random	0.461	0.405	0.322
random - random	0.434	0.388	0.387

(c) DNA (4 tasks)

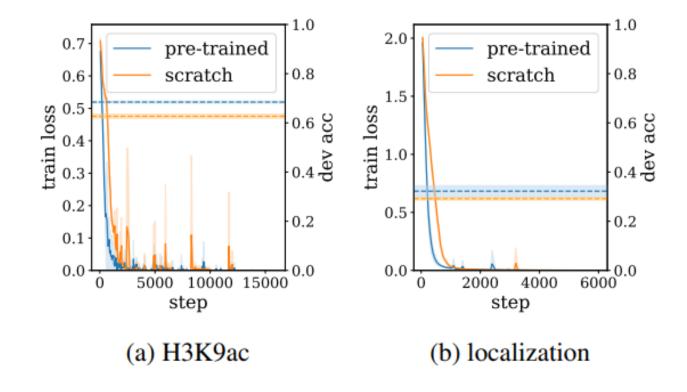
(d) music (1 task)

Optimization

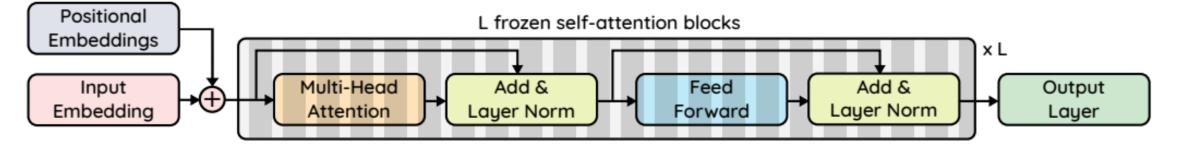


(b) fluorescence

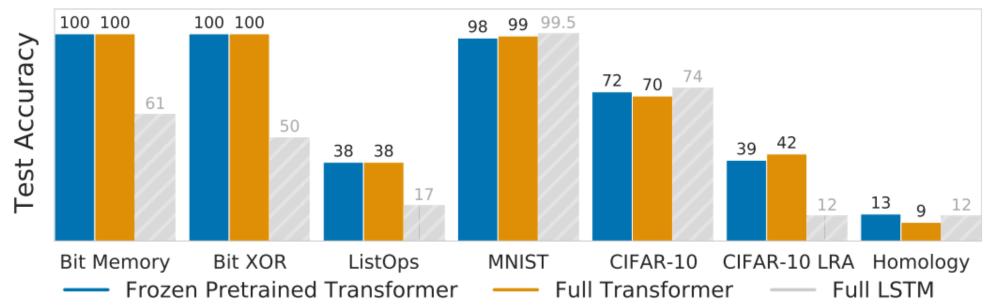
Generalization

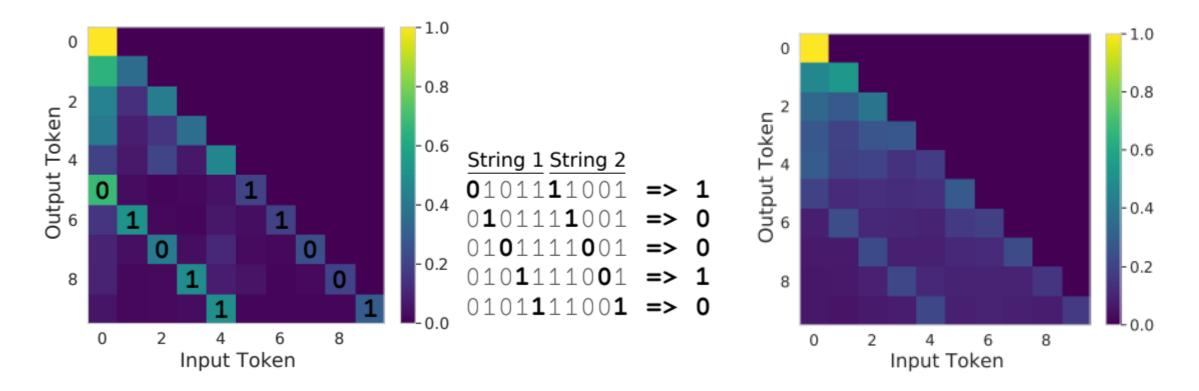


Self-supervised Model as Universal Computation Engine



Performance on Multimodal Sequence Benchmarks





Initialization	Memory	XOR	ListOps	MNIST	C10	C10 LRA	Homology
Pretrained	100%	100%	38.4%	98.0%	68.2%	38.6%	12.7%
Statistics Only	100%	100%	37.4%	97.2%	56.5%	33.1%	11.0%
Default	75.8%	100%	34.3%	91.7%	61.7%	36.1%	9.3%

這些發現有甚麼用? Speech Question Answering

TOEFL Listening Comprehension Test by Machine

Link: https://github.com/iamyuanchung/TOEFL-QA https://arxiv.org/abs/1608.06378

Audio Story: (The original story is 5 min long.) Question: "What is a possible origin of Venus' clouds?" Choices: (A) gases released as a result of volcanic activity (B) chemical reactions caused by high surface temperatures (C) bursts of radio energy from the plane's surface (D) strong winds that blow dust into the atmosphere

https://arxiv.org/abs/1804.00320 https://arxiv.org/abs/1808.02280

SQuAD-style Spoken QA

• Link: https://github.com/chiahsuan156/ODSQA

Dataset	QA-pairs	Hours	M-spkrs	F-spkrs	WER-D(%)	WER-Q(%)	Avg D Len	AvgQ Len
ODSQA	3654	25.28	7	13	19.11	18.57	428	22
DRCD-TTS	16746				33.63		332	20

SPOKEN OPEN-DOMAIN QUESTION ANSWERING DATASET

SQuAD-style Spoken QA

• Link: https://github.com/chiahsuan156/ODSQA

Dataset	QA-pairs	Hours	M-spkrs	F-spkrs	WER-D(%)	WER-Q(%)	Avg D Len	AvgQ Len
ODSQA	3654	25.28	7	13	19.11	18.57	428	22
DRCD-TTS	16746				33.63		332	20

SPOKEN OPEN-DOMAIN QUESTION ANSWERING DATASET

SOD QA

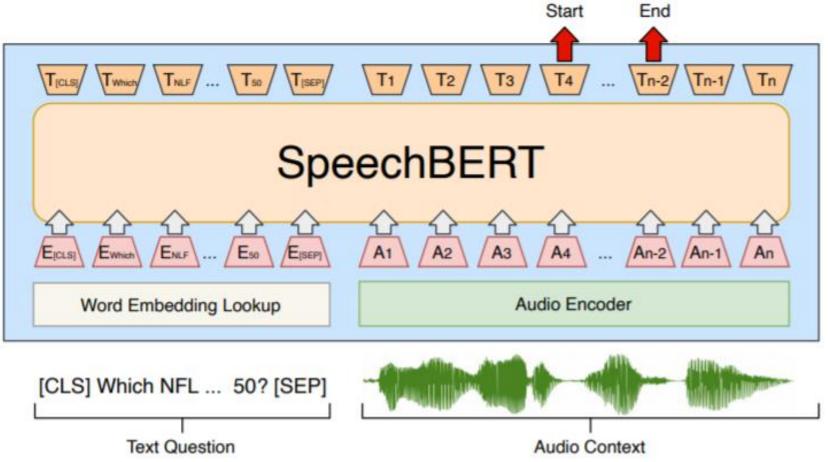
OPEN-DOMAIN SPOKEN QUESTION ANSWERING DATASET

ODS QA

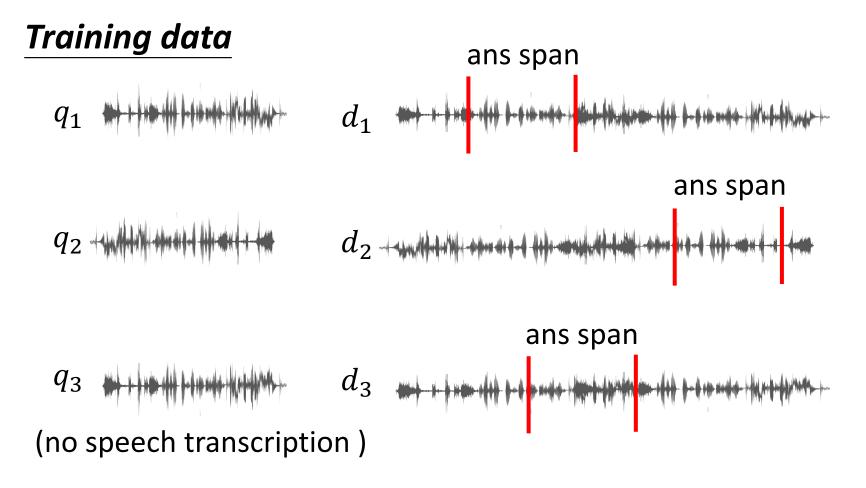
[Lee, et al., SLT'18]

Towards End-to-end

https://arxiv.org/abs/1910.11559

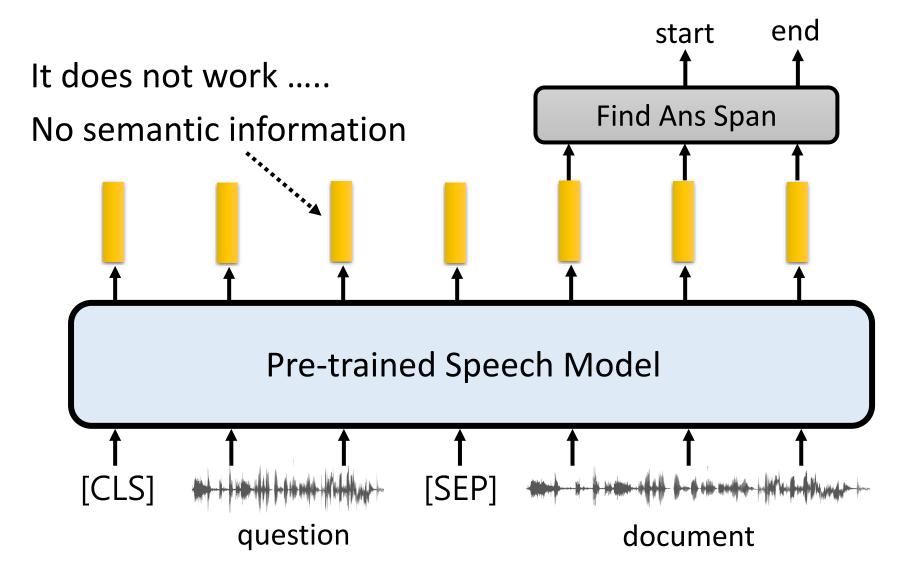


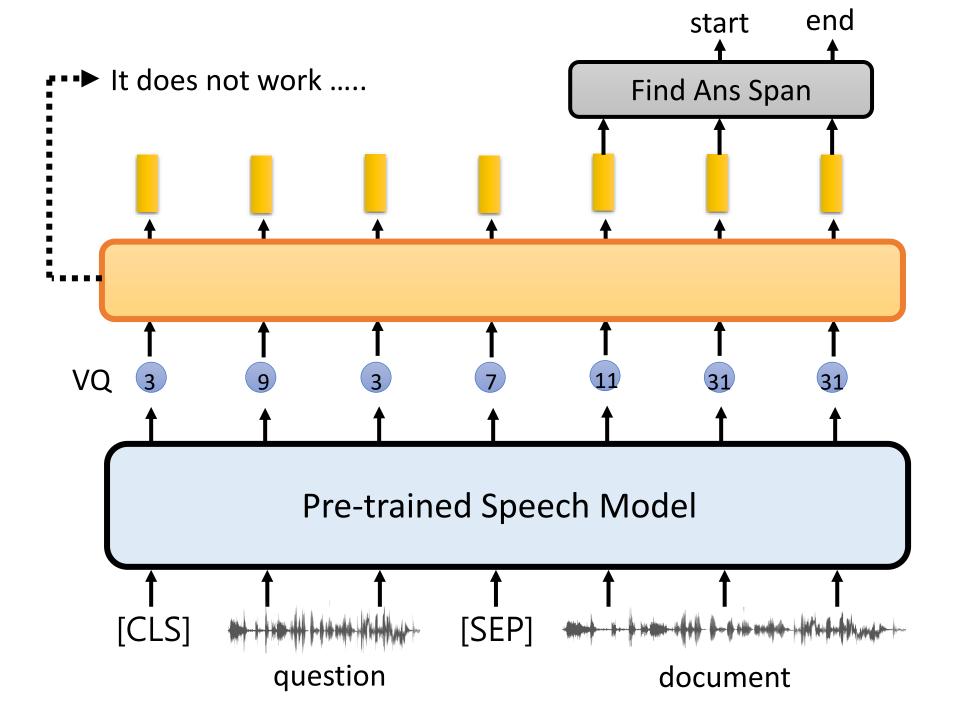
Speech Question Answering

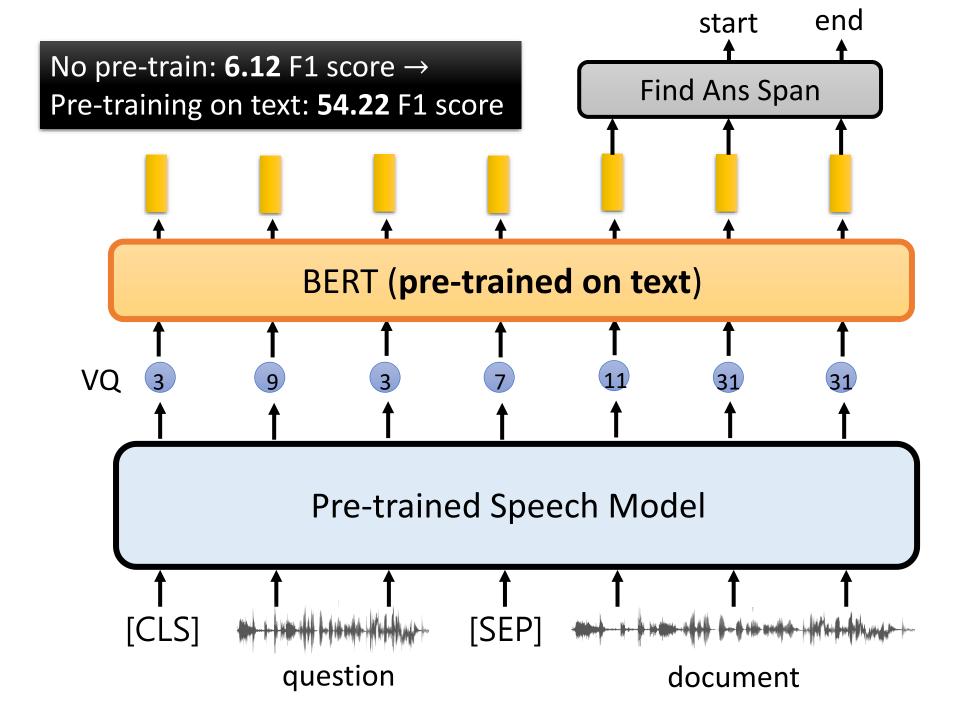


Can we train an end-to-end speech QA model?

Speech Question Answering



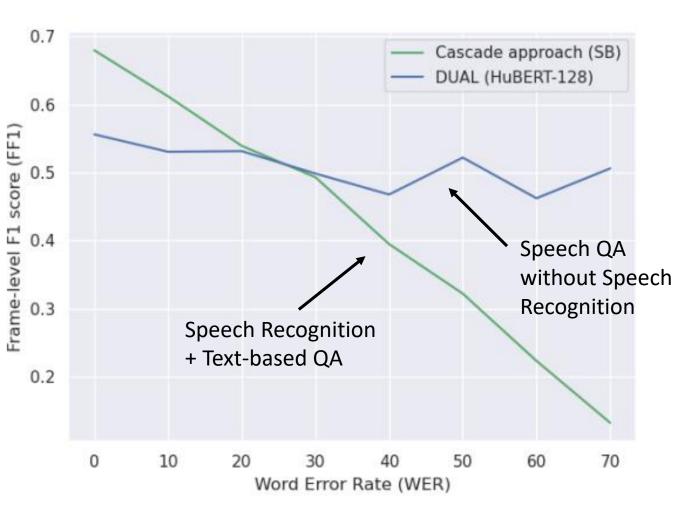




https://arxiv.org/abs/2203.04911 This work is done by 林冠廷

Speech Question Answering

Embedding Assignment	FF1	AOS
Most frequent	54.2	48.5
Least frequent	46.9	41.7
Random	51.7	46.2
Re-init	8.9	7.2
Scratch (baseline)	6.1	4.9



Outline

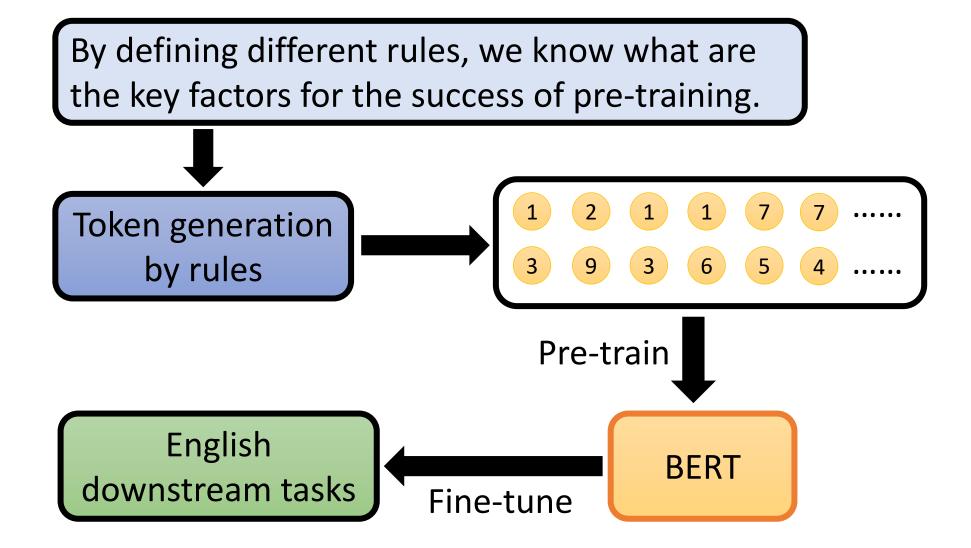
Case Study: BERT

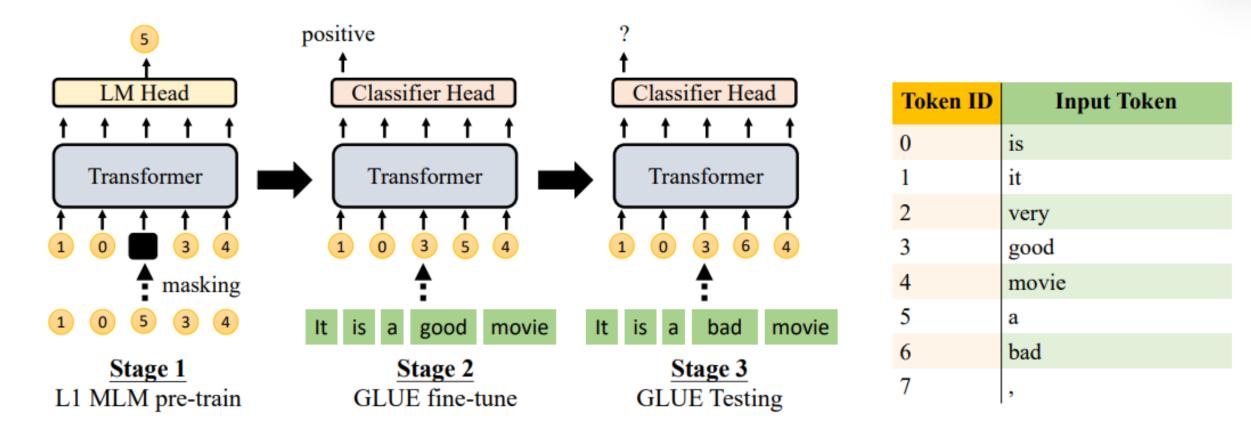
Story 1: Cross-lingual

Story 2: Cross-discipline

Story 3: Pre-training without Human Languages

Pre-training on Artificial Data

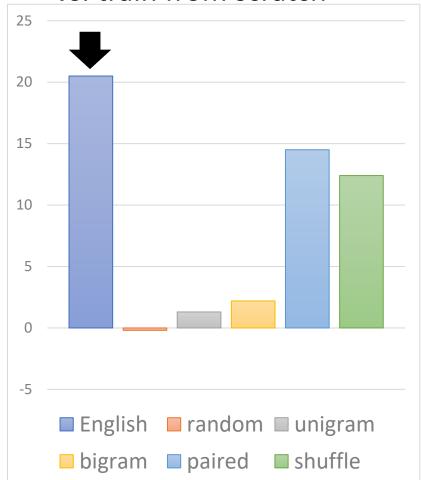




Pre-training on Artificial Data

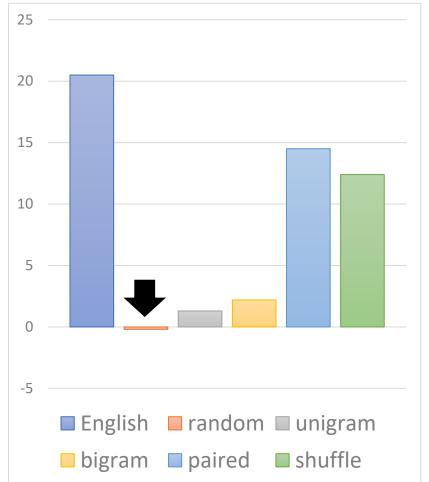
GLUE score improvement

vs. train from scratch



Pre-training on Artificial Data

GLUE score improvement vs. train from scratch

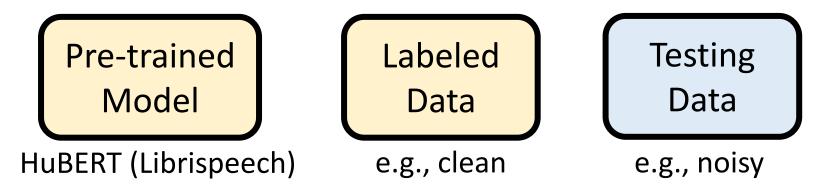


- Pre-training on random generated words yields the same performance as training from scratch.
- Data plays the role.

Learn more from robust wav2vec 2.0

https://arxiv.org/abs/2104.01027

Data is critical



		IC (Acc)				ER (Acc)		KS (Acc)			
	continual	clean	m+g+r	fsd50k	clean	m+g+r	fsd50k	clean	m+g+r	fsd50k	
(a) baseline	-	99.47	96.94	97.47	63.96	57.33	60.55	97.14	93.38	93.80	

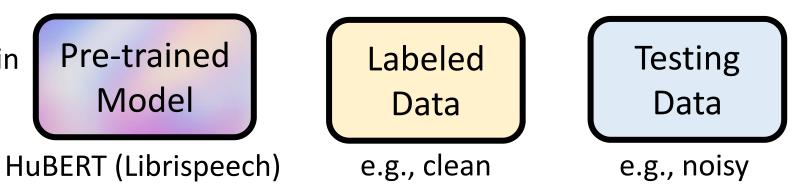
							ASR (WER)						
			SID (Acc)			lean	m+g+r		fsd50k		CHiME3		
	continual	clean	m+g+r	fsd50k	w/o	w/ LM	w/o	w/LM	w/o	w/ LM	w/o	w/ LM	
(a) baseline	-	84.97	65.51	77.61	6.72	4.88	10.16	7.94	9.62	7.57	33.4	29.26	

Learn more from robust wav2vec 2.0

https://arxiv.org/abs/2104.01027

Data is critical

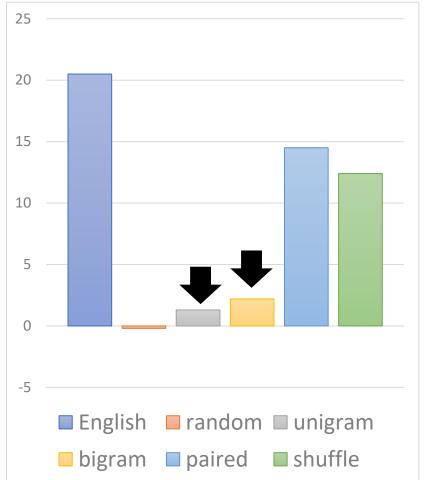
Continuously train with noisy data



	continual c		(Acc) -g+r fsd	150k	clean	ER (Acc m+g+r	c) fsd50k	cl		G (Acc) +g+r	fsd50k
(a) baseline	- 99	9.47 96	5.94 9	7.47	63.96	57.33	60.55	97	.14 9	3.38	93.80
(c) w/o DAT (d) w/o DAT				7.94 7.89	64.42 67.28	62.30 67.47	60.65 65.62)4.87)6.11	93.90 94.77
		SID (Acc	ASI clean m+g+r				SR (WER) fsd50k CH			HiME3	
	continual clear				w/ LM	w/o v		w/o			w/LM
(a) baseline	- 84.97	65.51	77.61	6.72	4.88	10.16	7.94	9.62	7.57	33.4	29.26
(u) sussine	0.071	00101									

Pre-training on Artificial Data

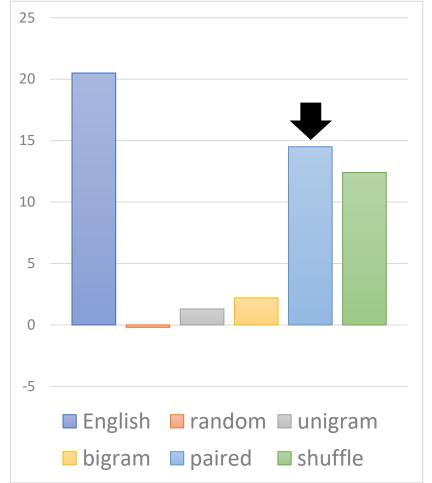
GLUE score improvement vs. train from scratch



- Pre-training on random generated words yields the same performance as training from scratch.
- Data plays the role.
- Pre-training from the data generated by unigram or bigram LMs helps a little.

Pre-training on Artificial Data

GLUE score improvement vs. train from scratch



- The sentences generated by very simple rules can lead to good pre-trained models.
- All the words in the generated sentences are paired.

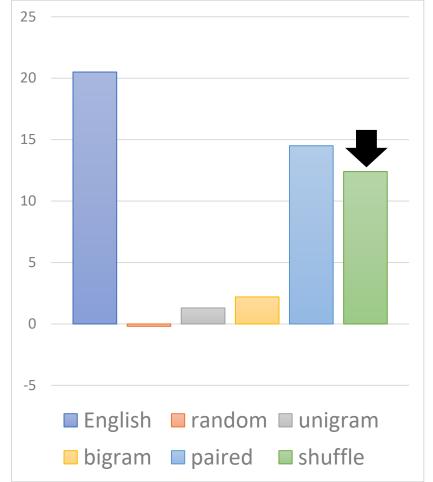
Also refer to:

Learning Music Helps You Read: Using Transfer to Study Linguistic Structure in Language Models

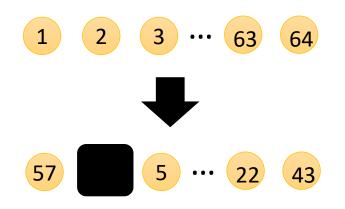
https://arxiv.org/abs/2004.14601

Pre-training on Artificial Data

GLUE score improvement vs. train from scratch



- The sentences generated by very simple rules can lead to good pre-trained models.
- All the words in the generated sentences are paired.
- Shuffle



Concluding Remarks

Story 1: Cross-lingual

Story 2: Cross-discipline

Story 3: Pre-training without Human Languages