加簽表單

Link

Machine Learning HW1 COVID-19 Cases Prediction

ML TAs

mlta-2023-spring@googlegroups.com

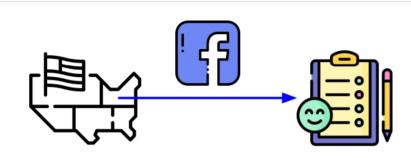
Outline

- Objectives
- Task Description
- Data
- Evaluation Metric
- Kaggle
- Grading

- Code Submission
- Hints
- Deadline
- Regulations
- Useful Links

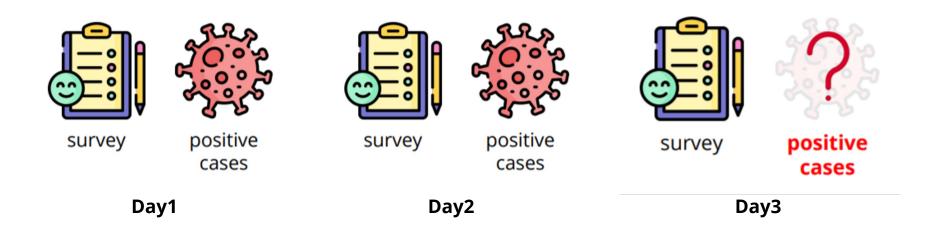
Objectives

Solve a regression problem with deep neural networks (DNN).


 Understand basic DNN training tips e.g. hyper-parameter tuning, feature selection, regularization, ...

Get familiar with PyTorch.

Task Description (1/2)


- COVID-19 Cases Prediction
- Source: Delphi group @ CMU
 - o A daily survey since October 2021 via facebook.

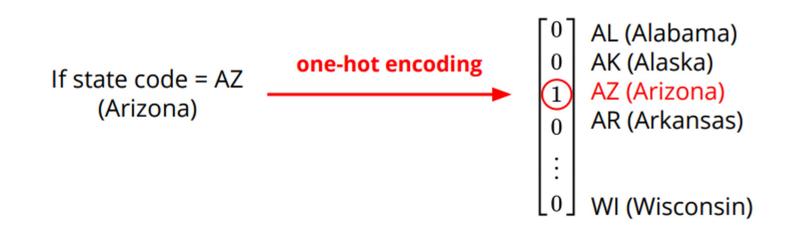
Try to find out the data and use it to your training is forbidden.

Task Description (2/2)

• Given survey results in the **past 3 days** in a specific state in U.S., then predict the percentage of **new tested positive cases** in the 3rd day.

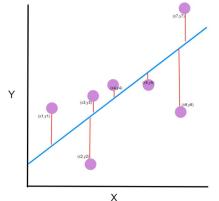
Data (1/3) – Feature

- States (35, encoded to one-hot vectors)
- COVID-like illness (5)
 - o cli, ili ...
- Behavior indicators (5)
 - wearing_mask, shop_indoors, restaurant_indoors, public_transit ...
- Belief indicators (2)
 - belief_mask_effective, belief_distancing_effective.


Data (2/3) – Feature

- Mental indicator (2)
 - worried_catch_covid, worried_finance.
- Environmental indicators (3)
 - other_masked_public, other_distanced_public ...
- Tested Positive Cases (1)
 - tested_positive (this is what we want to predict)

Data (3/3) – One-hot Vector


One-hot Vectors

Vectors with only one element equals to one while others are zero. Usually used to encode discrete values.

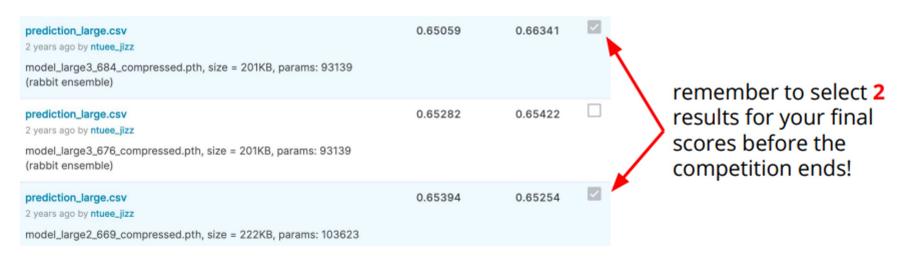
Evaluation Metric

Mean Squared Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
your model (prediction)

Kaggle (1/2) – Format

- Display name: <student ID>_<anything>
 - e.g. b10901000_public和private也差太多
 - For auditing, don't put student ID in your display name.


- Submission format: .csv file
 - See sample code

```
1 id,tested_positive
2 0,0.0
3 1,0.0
4 2,0.0
5 3,0.0
6 4,0.0
```

Kaggle Link

Kaggle (2/2) – Submission

- You may submit up to 5 results each day (UTC+8, AM 8:00)
- Up to 2 submissions will be considered for the private leaderboard

Grading (1/5) – Introduction

- In this class, there are **15** assignments.
- Each has **10** points, only count the 10 assignments with the highest points.
- You don't need to do all the assignments. Choose the one you are interested in.

Grading (2/5) – Introduction

- Most assignment includes leaderboard, gradescope, and code submission.
 - Leaderboard: Kaggle or JudgeBoi (our in-house Kaggle) competition
 - Gradescope : Answer some questions
 - Code submission: Submit the related code of each assignment via NTU COOL
- HW1 doesn't include gradescope.

Grading (3/5) – Leaderboard

	simple	(public)	+1 pts
	simple	(private)	+1 pts
	medium	(public)	+1 pts
	medium	(private)	+1 pts
	strong	(public)	+1 pts
	strong	(private)	+1 pts
	boss	(public)	+1 pts
	boss	(private)	+1 pts
•	code submission		+2 pts

Total: 10 pts

Grading (4/5) – Baseline Score

#	Team	Members	Score	Entries	Last
1	傷心咖啡店之歌	4	0.80786	4	15h
1	boss baseline		0.81456		
1	strong baseline		0.92619		
1	medium baseline		1.15678		
A T	simple baseline		1.96993		

Grading (5/5) – Bonus

 If your ranking in private leaderboard is top 3, you can choose to share a report to NTU COOL and get extra 0.5 pts.

- About the report
 - Your name and student_ID
 - Methods you used in code
 - Reference
 - in 200 words
 - Deadline is one week later than code submission
 - Please upload to NTU COOL's discussion of HW1

Report Template

Code Submission (1/6)

- NTU COOL
 - Compress your code and pack them into .zip file

<student_ID>_hw1.zip

- Do not submit models and data
- Submit the code you chose in Kaggle (One of the best)

Code Submission (2/6)

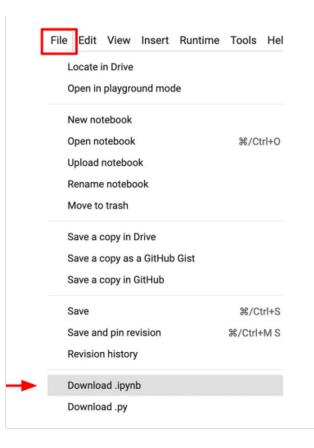
zip file folder

<student_id>_hw1.zip

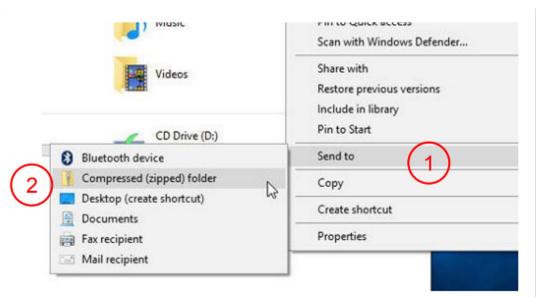
<student_id>_hw1

<

- Your .zip file should include only
 - Code: either .py or .ipynb



or


Code Submission (3/6)

- How to download your code
- From Google Colab

Code Submission (4/6)

- How to compress your folder?
- Method 1 (for Windows users)
 - https://support.microsoft.com/en-us/windows/zip-and-unzip-files-f6dde0a7-0fec-8294-e1d3-703ed85e7ebc

Code Submission (5/6)

- How to compress your folder?
- Method 2 (for Mac users)
 - https://support.apple.com/zh-tw/guide/mac-help/mchlp2528/mac

Compress "b10901000_hw1"

Code Submission (6/6)

- How to compress your folder?
- Method 3 (command line)

```
zip -r <name>.zip <directory name>
```

e.g.

zip -r b10901000_hw1.zip b10901000_hw1

Hints

Simple: Just run sample code

Medium: Feature selection

Strong: Different optimizers and L2 regularization

Boss: Better feature selection, different model architectures and try more hyper-parameters

Deadline

Kaggle

2023/03/01 23:59 (UTC+8)

NTU COOL

2023/03/08 23:59 (UTC+8)

Regulations

- You should finish your homework on your own.
- You should not modify your prediction files manually
- Do not share codes or prediction files with any living creatures.
- Do not use any approaches to submit your results more than 5 times a day.
- Do not search or use additional data or pre-trained models.
- Your **final grade x 0.9 and this HW will get 0 pt** if you violate any of the above rules.
- Prof. Lee & TAs preserve the rights to change the rules & grades.

Contact us if you have problems...

- Kaggle Homework 1 Discussion
 - https://www.kaggle.com/competitions/ml2023spring-hw1/discussion
- NTU COOL Homework 1 Discussion
 - https://cool.ntu.edu.tw/courses/24108
- Email
 - mlta-2023-spring@googlegroups.com
 - The title should begin with "[hw1]"

Useful Links

- Hung-yi Lee, Gradient Descent (Mandarin)
 - o link1, link2, link3, link4
- Hung-yi Lee, Tips for Training Deep Networks (Mandarin)
 - o <u>link1</u>, <u>link2</u>
- Pytorch Toolkit
- Link that can find all things
- Class webpage

(If Google or Stackoverflow can answer your questions, you may take advantage of them before asking the TAs.)

FAQ

- (1) L2 regularization 除了 sample code 提供的在計算 loss 時處理之外,也可以使用 optimizer 的 weight_decay 實現,可參考 ፟ PyTorch 官方文檔
- (2) sklearn、 TensorFlow、 xgboost 是可以使用的 (使用額外線上資源請附上 Reference)
- (3) 只要 Post-processing 是由程式自動完成,且並未違反規定(如不能使用 pre-trained model、不能直接輸出 hardcode 的結果、不能上網爬資料等),都是可以接受的,另外,請記得將後處理的程式一併交上,若沒有交上,將視為違反規定。
- (4) 同學只要確認上傳時的檔名正確,COOL 系統內部會在同名的檔案依照版本順序加上編號,忽略即可 (如 "學號_hw1-1.zip" 等)。另外請同學確認最後一次上傳的版本是正確的,我們只會認最新的版本