Machine Learning [Understanding the Environment]

I-Ching Tseng

d08922025@csie.ntu.edu.tw

National Taiwan University

March 2023

Outline

Overview

- Package Management Tools
- GPU
- Docker
- Conclusion

Overview

To run a machine learning (ML) model

- > You have to set up an environment
- > Using virtualization or package management tools is a good practice
 - You can migrate the code and reproduce the result easily
 - Different applications will not affect each other

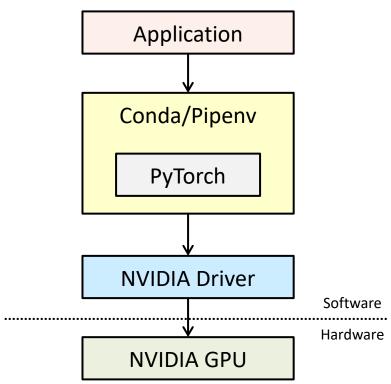
In this tutorial

- > We will provide some guidelines for setting up the environment
 - The examples are executed in Linux
 - For Windows users, we recommend using Windows Subsystem for Linux
- > We will help you understand the environment
 - The software stack
 - NVIDIA GPUs

Outline

Overview

Package Management Tools


- Prerequisites
- Conda
- Pipenv
- Summary
- GPU
- Docker
- Conclusion

Prerequisites

Package management tools

- Help you manage the environment
- Do not manage the GPU driver

□ To utilize GPUs, make sure the GPU driver is intalled

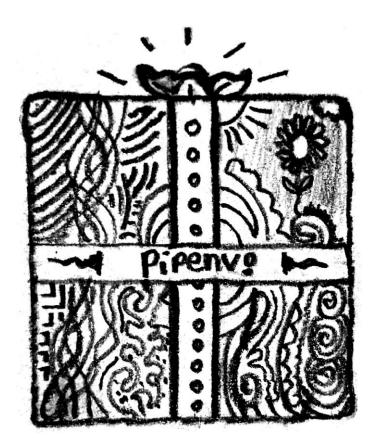
Conda

Conda

An open source package and environment management system

Supports Windows, MacOS, and Linux

U We take Anaconda as an example


Quick Start - Anaconda

Steps	Linux Command
Install Anaconda with the <u>installer</u> (Check the <u>document</u> for details)	bash Anaconda3-2021.11-Linux-x86_64.sh
Create an environment (You can replace test_env with your desired environment name)	conda create -n test_env
Install packages (You can find the command in the <u>PyTorch official website</u>)	conda install -n test_env pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
Activate the environment	conda activate test_env
Run your application	python ml.py
Leave the environment	conda deactivate

Pipenv

Dipenv

> A tool that creates and manages a virtualenv

Quick Start - Pipenv

□ To know more about Pipenv, please check the <u>document</u>

Steps	Linux Command	
Install Pipenv with pip3	pip3 install pipenv	
Install packages	pipenv install numpy torchvision torchindex https://download.pytorch.org/whl/cu113	
Activate the environment	pipenv shell	
Run your application	python ml.py	
Leave the environment	Ctrl + D	

Summary

To utilize GPU, you must install driver on your host machine

Using Conda or Pipenv to build environments is recommended

- Programs become portable
- Results can be reproduced easily
- Applications do not affect each other

□ You can stop here if you just want to finish the homework

GPU Not Detected

□ Sometimes, you may find that the GPU is not detected

- > There are many possible reasons
- □ In order for the GPU to work properly, we need to have some basic understanding of the GPU and its related software

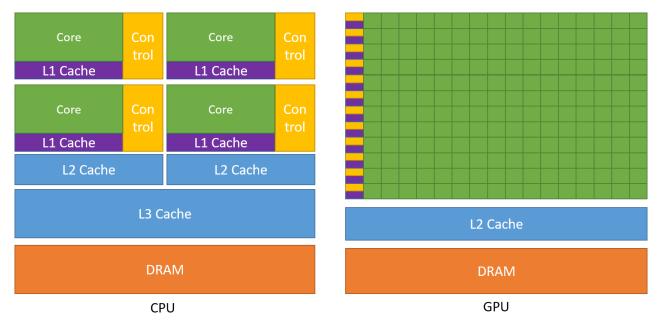
➢ We only focus on NVIDIA GPUs

Outline

- Overview
- Package Management Tools

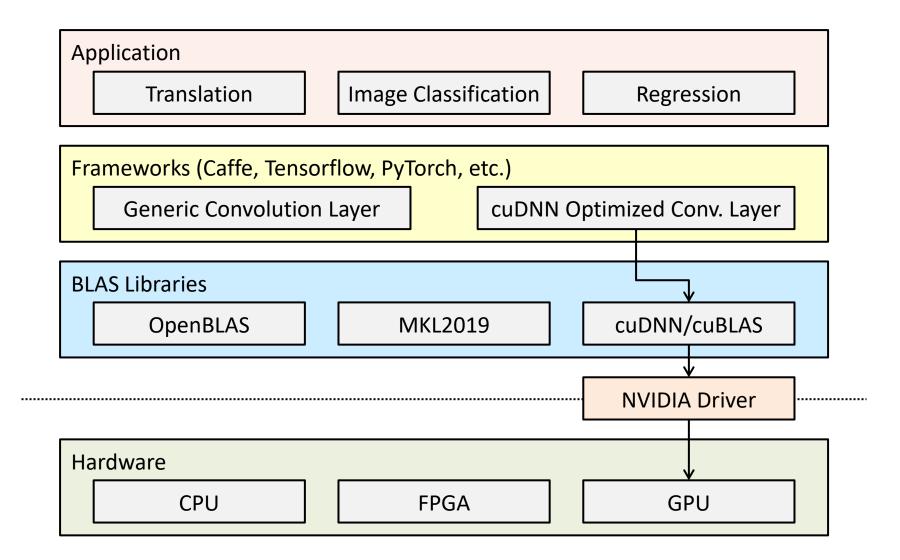
GPU

- > NVIDIA GPUs
- Software Stack
- > NVIDIA Driver
- > CUDA
- Docker
- Conclusion


NVIDIA GPUs

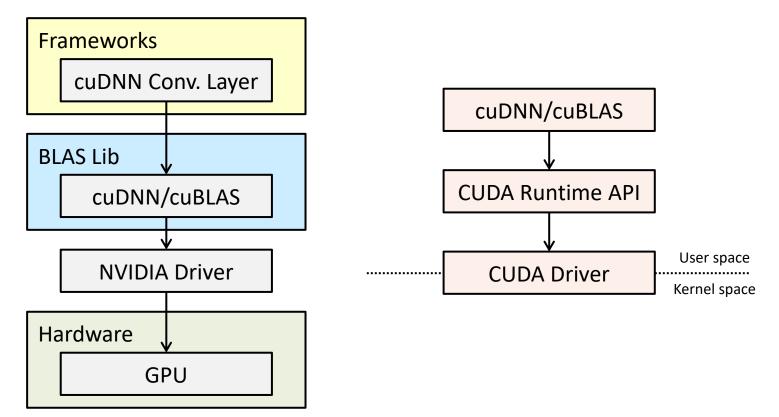
General Purpose Graphics Processing Units (GPGPU)

- GPUs are originally designed for computer graphic applications
- GPU is good at parallelizing "simple and repetitive" computations
 - E.g., matrix multiplication


> There are massive matrix multiplication computations in ML models

• We utilize GPUs to accelerate ML model training

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Software Stack

NVIDIA Driver

NVIDIA driver

- The software that allows operating systems (OS) to communicate with GPUs
- Includes kernel modules

CUDA

Compute Unified Device Architecture (CUDA)

"A parallel computing platform and application programming interface that allows software to use NVIDIA GPUs" [Wikipedia]

CUDA Runtime API vs. CUDA Driver API

- ➤ The driver CUDA version must ≥ the runtime CUDA version
- Check the driver CUDA version

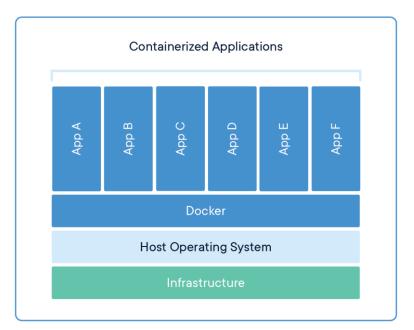
Tue Feb 15 09					
NVIDIA-SMI	510.47.03 Drive	r Version: 5	510.47.03	CUDA Version: 11.6	ĺ
GPU Name	Persistence-N	4 Bus-Id		Volatile Uncorr.	

- ➤ When we "install CUDA"
 - We usually refer to the CUDA runtime
 - You should check the framework compatibility
 - The version should not be greater than the driver CUDA version
 - You should choose the runtime CUDA version carefully

Outline

- Overview
- Package Management Tools
- GPU

Docker


- Virtualization
- Why using Container?
- Contanerization with Docker
- Pulling Docker Images
- > NVIDIA Docker

Conclusion

Virtualization

□ Virtual machine (VM) and container

Virtual Machine	Virtual Machine	Virtual Machine	
Арр А	Арр В	Арр С	
Guest Operating System	Guest Operating System	Guest Operating System	
Hypervisor			
Infrastructure			

You only have to know that

Containers only virtualize software layers above the OS level

- It is a good choice if we only focus on specific hardware (e.g., NVIDIA GPUs)
- Containers are relatively lightweight

Why using Container?

Containers can virtualize more complex environments

- Even if you "only want to train models"
 - You may use other frameworks that do not ship with CUDA and cuDNN
 - You may need NCCL to perform efficient parallel and distributed training
 - You may need to run an old version PyTorch, but the default CUDA version is too old to communicate with the latest powerful GPU
- Slurm and Kubernetes are popular server management tools in both academia and industry
 - Slurm supports singularity container
 - <u>Kubernetes</u> runs applications in Docker containers

Containerization with Docker

Docker

- > A platform for you to build and execute containers
- Docker installation
 - Docker Desktop (for Mac and Windows) runs a VM

Docker image

A set of instructions for creating a Docker container

Steps of setting up environment with Docker

- Install Docker
 - One-time effort
- Build/pull an image
 - There are lots of built images
- Run the container
- ➢ Run your application

Pulling Docker Images

Docker Hub

> A place for finding and sharing Docker images

- E.g., Docker Hub repository of PyTorch
- Check the Docker Hub and find the image tag
 - <u>1.9.1-cuda11.1-cudnn8-devel vs. 1.9.1-cuda11.1-cudnn8-runtime?</u>

TAG 1.9.1-cuda11.1-cudnn8-runtime Last pushed 3 months ago by seemethere		docker pull pytorch/pytorch:1.9.1-cu
DIGEST	OS/ARCH	COMPRESSED SIZE ◎
ad4e5c3eeb79	linux/amd64	3.63 GB

Run "docker pull <image_tag>"

d08922025@linux-server-3:~/sandbox\$ docker pull pytorch/pytorch:1.9.1-cuda11.1-cudnn8-runtime
1.9.1-cuda11.1-cudnn8-runtime: Pulling from pytorch/pytorch
284055322776: Already exists
74339e6e5c51: Pull complete
260f45ece716: Pull complete
343d1e51332d: Pull complete
Digest: sha256:ad4e5c3eeb79109fbdf277eb4286684058c6e3f7d7909e318757d727cc96580c
Status: Downloaded newer image for pytorch/pytorch:1.9.1-cuda11.1-cudnn8-runtime
docker.io/pytorch/pytorch:1.9.1-cuda11.1-cudnn8-runtime

NVIDIA Docker (1/2)

Using GPUs in Docker container makes container less portable

- Containers work in user space
 - Root privilege only means you can use some privileged system calls
- Using NVIDIA GPUs requires kernel modules and user-level libraries
 - The CUDA version of the driver user-space modules must be exactly the same as the CUDA version of the driver kernel modules
 - The runtime CUDA version can be smaller than the driver CUDA version
- The host driver must exactly match the version of the driver installed in the container

We should use NVIDIA Docker

- Install NVIDIA Docker
- > You do not have to install the NVIDIA driver in the container

NVIDIA Docker (2/2)

Steps

- Install the latest NVIDIA driver
 - One-time effort
- Install NVIDIA Docker
 - One-time effort
- Build/pull an image
- Run the container
- ➢ Run your application

d08922025@linux-server-3:~/sandb root@19988f75920c:/workspace# nv Tue Feb 15 10:30:13 2022		it pytorch/pytorch:1	1.9.1-cuda11.1-cudnn8-runtime
NVIDIA-SMI 510.47.03 Driver	Version: 510.47.03 CUDA	Version: 11.6	
GPU Name Persistence-M Fan Temp Perf Pwr:Usage/Cap 	Bus-Id Disp.A Vo Memory-Usage GPU 	latile Uncorr. ECC U-Util Compute M. MIG M.	
	00000000:01:00.0 Off 70MiB / 11264MiB 	======================================	

Outline

- Overview
- Package Management Tools
- GPU
- Docker
- **Conclusion**

Conclusion

U Whether or not you virtualize your environment

- > You must install the NVIDIA driver on the host to utilize NVIDIA GPUs
- The runtime CUDA version must be less than or equal to the driver CUDA version

□ If you want to use NVIDIA GPUs in containers

- Using NVIDIA Docker makes your life easier
 - You do not need to install NVIDIA drivers in containers
 - Containers are more portable
- You only have to pull the built Docker image from Docker Hub
 - You do not have to set up CUDA, cuDNN, and frameworks yourself
 - This is useful especially when the environment is complex

Q&A

Thank You!