Homework 4 Training Transformer

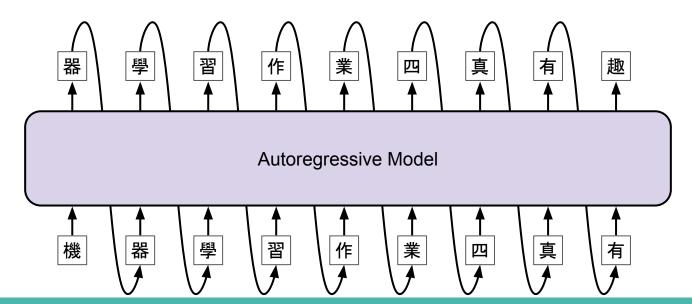
TAs: 李晨安 林毓翔 林熙哲

Email: ntu-ml-2025-spring-ta@googlegroups.com

Deadline: 2025/4/11 23:59:59 (UTC+8)

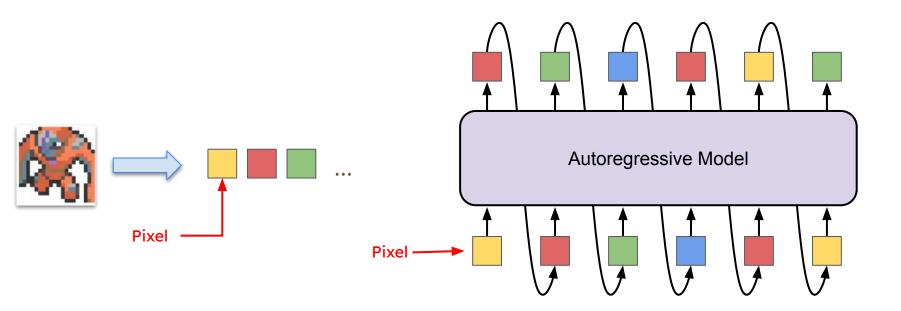
Outline

- Task Description
- Dataset
- Baselines
- Submission & Grading
- Appendix


Task Description

Task Description

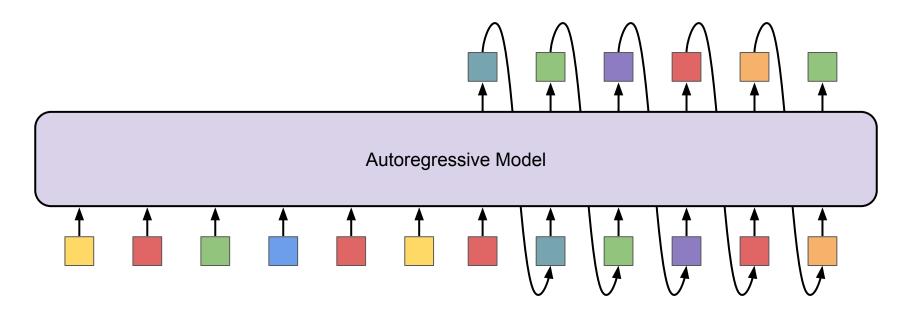
- Using a transformer decoder-only model for training, focusing on next-token prediction with Pokémon images.
- Goal: Learn how to use current LM architecture to do next token prediction.

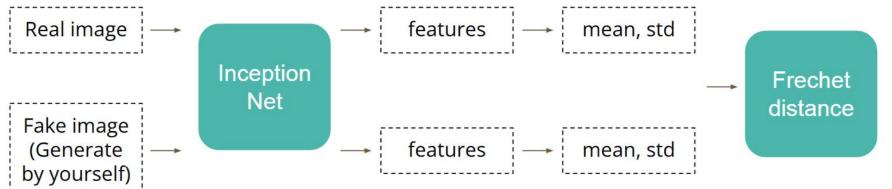

Next token prediction

 Next-token prediction is a fundamental concept in language modeling, involving the prediction of the most likely next word (or token) in a sequence based on the preceding context.

Pokémon Creation

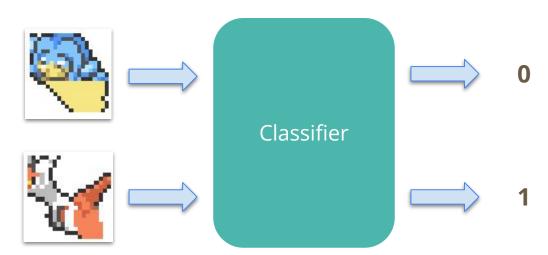
Training: Next token prediction


Pokémon Creation


• Testing: Given 60% of an image, predict the remaining part.

Metrics

FID (Frechet Inception Distance)

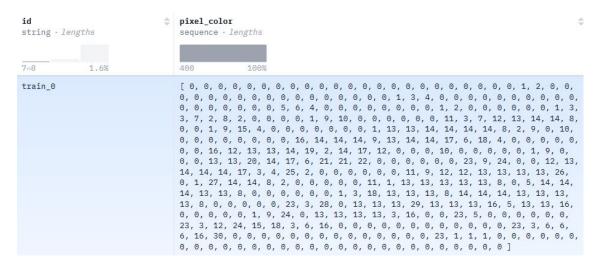

- Use Inception Net to create features for real and fake images
- Calculate the Frechet distance between distribution of two features, the lower the better.

Metrics

PDR (Pokémon Detection Rate)

 Use a classifier to count how many images in your submission look like a Pokémon, the higher the better.

Dataset


Dataset

Dataset: Small images of 792 Pokémon's (20x20)

Dataset

 Each image has 400 numbers (20 × 20), with each number representing a color.

Data Statistics

- Total Images: 792
- Dataset Split:
 - o Train: 632
 - Validation: 80
 - o Test: 80
- Image Size: $20 \times 20 = 400$ pixels
- Number of Classes (Pixel Colors): 167

Baselines

Simple Baseline

 Build a transformer decoder-only model for next-token prediction using Pokémon images with sample code.

Medium Baseline

- Modify the hyperparameters in the Model configuration in the sample code.
- Adjust the number of epochs and learning rate in the sample code.

Strong Baseline

- Try different model architectures like Llama, Mistral, or Qwen. (Recommended)
 - The sample code uses GPT-2.
- Train a classifier to determine whether an image looks like a Pokémon.
 (Optional)
 - The sample code saves the checkpoint with the lowest training loss, since the reconstruction accuracy on the validation set does not directly indicate the model's image generation capability.

Hints: Different model architectures (Recommended)

- Import the corresponding Config class from the Transformers package and set the appropriate hyperparameters for training.
- LlamaConfig
 - o <u>Link</u>
- MistralConfig
 - o <u>Link</u>
- Qwen2Config
 - o <u>Link</u>

Hints: Train a classifier (Optional)

- The sample code saves the checkpoint with the lowest training loss since validation set reconstruction accuracy doesn't directly reflect the model's image generation ability.
- One solution is to train a classifier to determine whether an image looks like a Pokémon and use it to select the best checkpoints.
- This step is optional because you can still pick a good checkpoint through human evaluation, and training time is short.

Submission & Grading

Submission - JudgeBoi

- Only *.txt file is allowed.
- 5 submission quota per day, reset at 23:59 (UTC+8).
- Each submission uploaded to JudgeBoi will be evaluated with a time limit of 10 minutes.

Submission - JudgeBoi

- Each submission file must contain exactly 80 lines, with each line representing an image.
- Each image consists of 400 numbers.

```
101 101 101 37 37 37 39 0 0 0 0 0 0 0 0 0 5 101 101 101 37 37 37 39 0 0 0 0
39 139 139 139 32 141 139 141 53 139 126 139 139 63 127 113 0 113 25 113 139 139 139 12
```

Each line contains $20 \times 20 = 400$ numbers.

Each line represents an image.

Submission - NTU COOL

- Submit your code to NTU COOL
 - We can only see your last submission.
 - Do NOT submit the model checkpoint or dataset.
 - If your code is not reproducible, your final grade will be multiplied by 0.9.
 - You should compress your code into a single zip file:
 - ex. b12901000_hw4.zip

<Student ID>_hw4.zip

Grading

	FID	PDR	Estimate training time	Score
Public Simple Baseline	≤ 84.50	≥ 0.1	10 mins	+ 1pt
Private Simple Baseline	≤ 84.50	≥ 0.1		+ 1pt
Public Medium Baseline	≤ 81.00	≥ 0.5	20 mins	+ 1pt
Private Medium Baseline	≤ 81.00	≥ 0.5		+ 1pt
Public Strong Baseline	≤ 73.00	≥ 0.85	30 mins	+ 1pt
Private Strong Baseline	≤ 73.00	≥ 0.85		+ 1pt
Code Submission	-	-	-	+ 4pts

^{*}Your results must meet both FID and PDR requirements to pass the baseline.

Deadline

- JudgeBoi: 2025/04/11 23:59 (UTC+8)
- NTU COOL: 2025/04/11 23:59 (UTC+8)

Regulation

- You should NOT plagiarize, if you use any other resource, you should cite it in the reference.
- You should NOT modify your prediction files manually.
- Do NOT share codes or prediction files with any living creatures.
- Do NOT use any approaches to submit your results more than 5 times a day.
- Do NOT search or use additional data or pre-trained models.
- The generated image can only be used for this homework.
- Your final grade x 0.9 and get a score 0 for that homework if you violate any of the above rules first time (within a semester).
- Your will **get F for the final grade** if you violate any of the above rules **multiple times (within a semester)**.
- Prof. Lee & TAs preserve the rights to change the rules & grades.

Appendix

Links

- Colab: <u>link</u>
- Dataset: <u>link1</u>, <u>link2</u>
- JudgeBoi: <u>link</u>

If any questions, you can ask us via...

- NTU COOL (Recommended)
- Email
 - ntu-ml-2025-spring-ta@googlegroups.com
 - The title should begin with "[HW4]"
- TA hour
 - Friday, 13:30 ~ 14:20
 - Friday, After Course ~ 18:00