
ML2025 HW9
Model Merging

TAs: 黃筱穎、陳又華、謝翔

Email: ntu-ml-2025-spring-ta@googlegroups.com

Deadline: 2025/6/6 23:59:59 (UTC+8)

mailto:ntu-ml-2025-spring-ta@googlegroups.com

Links
● Course Website

● NTU COOL

● Colab Sample Code

● Kaggle Sample Code

● Dataset

● Judgeboi

● PEFT ckpts: GSM8K, ARC

● (2025/05/21 Update) TA version peft package: link1, link2, link3, link4

● (Deprecated to avoid plagiarism)How to build a private customized peft package

https://speech.ee.ntu.edu.tw/~hylee/ml/2025-spring.php
https://cool.ntu.edu.tw/
https://colab.research.google.com/drive/17CMSi43f2AS8Hc2Dr19hQlipMvFJu8xq?usp=sharing
https://www.kaggle.com/code/monicahuangml1/ml2025-hw9-model-merging
https://huggingface.co/datasets/MonicaHuang/ML2025_HW9
https://ml.ee.ntu.edu.tw/home
https://huggingface.co/MonicaHuang/llama-2-7b-chat-GSM8K-MCQA
https://huggingface.co/chenjoachim/llama-2-7b-chat-ARC-MCQA
https://drive.google.com/file/d/1HK8q4l7aMI6MjNdeJyzLCqbgM8lZCAZV/view?usp=drive_link
https://drive.google.com/file/d/1eEtVtCjUj4HnAJLNh5nLp2ZZISYva-vH/view?usp=drive_link
https://drive.google.com/file/d/1tzzsvwFzL4x6L76AG8ibKpB1dXEvHEW0/view?usp=drive_link
https://drive.google.com/file/d/1SK9PxF23LdMnvKvi7q4R-R9iccQ9KLXX/view?usp=drive_link
https://docs.google.com/presentation/d/1tScnnXok48IBxnvQziysbv_johUdvdujsEQZrlk6xTU/edit?usp=sharing

Outline

● Task Description

● Dataset

● Eval Metric and Answer Extraction

● Merging Algorithms, TODO and Hints

● Submission and Grading

● Reference

Task Description

Task Description
● Goal: Learn to merge models with distinct capabilities at the parameter

level to build a unified, multi-task model without additional training

● Explore various model merging algorithms to develop a unified model
that preserves or improves performance across two tasks

Model Merging
● Def. refer to the process of merging models with simple arithmetic on

parameters without retraining from scratch or accessing original
training data, to preserve or integrate capabilities from each source
model (e.g., tasks, domains) into a unified model

Ilharco, Gabriel, et al. "Editing models with task arithmetic."
arXiv preprint arXiv:2212.04089 (2022).

https://arxiv.org/pdf/2212.04089

Model Merging
● recent emergence of large foundation models and pretraining-finetuning

paradigm have motivated more merging techniques → Multi-Task Learning

● redundant parameter or sign conflicts in different task vectors ⇒
parameter interference → degraded performance

Lee, Yeoreum, Jinwook Jung, and Sungyong Baik. "Mitigating Parameter Interference in Model Merging
via Sharpness-Aware Fine-Tuning." The Thirteenth International Conference on Learning Representations.

https://arxiv.org/pdf/2504.14662
https://arxiv.org/pdf/2504.14662

Task Description
● Most Important: During merging, avoid problems like parameter

interference, etc. to preserve performance on both math (GSM8K) and
science (ARC) reasoning tasks

● TAs have finished PEFT on two individual tasks (freeze base model).
○ base model: llama-2-7b-chat-bnb-4bit (llama-2-7b-chat quant ver.)
○ LoraConfig: r=8, target_modules=["q_proj", "k_proj", "v_proj"],

lora_alpha=16, lora_dropout=0.05 (LoRA related, refer to HW5)
○ Performances (Accuracy)

■ after FT: science (63%), math (52.5%)
■ base: science (44%), math (37%)

https://huggingface.co/unsloth/llama-2-7b-chat-bnb-4bit

Task Description
● Science (ARC) example after PEFT

Question:

A scientist discovers that a certain substance will be useful in treating nerve damage. What is the best way she
can communicate her results to the scientific community? (A) She can call other scientists who also work in
nerve research. (B) She can write a letter to hospitals that treat patients with nerve damage. (C) She can put her
conclusions on a Web site that focuses on the nervous system. (D) She can publish her results in a scientific
journal that covers issues relating to nerves.

Answer after PEFT:

The answer is (D) She can publish her results in a scientific journal that covers issues relating to nerves.
Scientific journals are the primary means of communicating scientific research to the scientific community. They
provide a platform for scientists to share their findings with other scientists, and they are peer-reviewed,
meaning that other scientists review and evaluate the research before it is published. This helps ensure that the
research is accurate and reliable. Calling other scientists, writing a letter to hospitals, or putting conclusions on a
Web site are not as effective in communicating the results to the scientific community.</s>

Task Description
● Math (GSM8K) example after PEFT

Question:

Lloyd has an egg farm. His chickens produce 252 eggs per day and he sells them for $2
per dozen. How much does Lloyd make on eggs per week? (A) 294 (B) 312 (C) 320 (D) 432

Answer after PEFT:

Lloyd has 252 eggs / 12 eggs = <<252/12=21>>21 dozens of eggs. Lloyd makes 21
dozens of eggs * $2/dozen = $<<21*2=42>>42 per day. Lloyd makes $42/day * 7
days/week = $<<42*7=294>>294 per week. The answer is (A) 294. </s>

Task Description
● peft: Parameter-Efficient Fine-Tuning package can help us operate

arithmetic on LoRA matrices
● relationship between LoRA weights and task vectors

○ The difference between “before peft” and “after peft” is the newly fine-tuned LoRA
weights. → Task information is respectively stored in low-rank matrices. →
called as “Task Vector” → When merging task vectors of two tasks, we are
merging their corresponding task capabilities.

Task
Vector

after
PEFT

before
PEFT

LoRA
Matrices

=
Task

Vector

https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/developer_guides/model_merging
https://huggingface.co/docs/peft/developer_guides/model_merging

Task Description: Overall
● Use peft package to apply arithmetic operations on LoRA weights and

inference the merged model on two tasks.

● during inference of all questions, you must use the same merged model (consistent
merging setting)

Task Description: Overall

Math/Science
MCQAs

2 PEFT
Models

 llama-2-7b-
chat-bnb-4bit

+ LoRA

base models have been
parameter-efficiently
fine-tuned for specific
domain capabilities

huggingface
peft merging

toolkit

merge on LoRA weights
with techniques,
e.g. linear, pruning, ties

a Model with
two-task
capability

Inference

https://drive.google.com/file/d/1HK8q4l7aMI6MjNdeJyzLCqbgM8lZCAZV/view?usp=drive_link

Dataset

Dataset
● 400 multi-choice questions from both ARC(Easy, Challenge) and

GSM8K(MCQA ver.) datasets

● correct dataset link (huggingface)

https://arxiv.org/pdf/1803.05457
https://arxiv.org/pdf/2110.14168
https://huggingface.co/datasets/MonicaHuang/ml2025_hw9

Dataset
● ARC (grade-school level, multiple-choice science questions)

Dataset
● GSM8K (grade school math word problems, multiple-choice questions ver.)

Eval Metric and Answer Extraction
● Evaluation Metric

○ Accuracy on 400 MCQA problems

● Answer Extraction Methods (on Judgeboi)
○ LLM Judge (GPT-4o) to retrieve the actual predicted option

possible answer formats:

The answer is …, The correct answer is …,
Therefore, option, Answer: …,

Therefore, the answer is …, Option… is correct

Merging Algorithms, TODO and Hints

Merging Algorithms
● In HW9, we implement merging on LoRA A/B matrices of the two

fine-tuned checkpoints (task vectors of the science and math mcqa tasks).

● peft package helps apply merging algorithms directly on tensor (matric)
level, on all task vectors.

Terminology in Merging Algorithms
3 common variables from the implementation in peft…

● task vector τ
○ LoRA A and B matrices within [q_proj, k_proj, v_proj] modules in all

attention layers, each matrix with shape (4096,8) (tensor)

● weights list(α)
○ weights or scalar coefficients of task vectors

● density d
○ fraction of values to preserve in a matrix

τ1 τ2 τ3

Merging Algorithms
● Task Arithmetic / linear (weights)

weighted sum of
task vectors

τ1 τ2 τ3

*α1 *α2 *α3

Ilharco, Gabriel, et al. "Editing models with task arithmetic."
arXiv preprint arXiv:2212.04089 (2022).

https://arxiv.org/pdf/2212.04089

Merging Algorithms
● Magnitude Prune (density, weights)

Arrow: direction → sign, length → magnitude

weighted sum of
pruned task vectors

prune
and

preserve
top-d
values

τ1 τ2 τ3

*α1 *α2 *α3

Merging Algorithms
● DARE Linear (density, weights)

Randomly
zero out a

fraction
(1-density)

of the
tensor
entries

 Rescale the
remaining
values by

1/density to
original

expected
value

weighted
sum of
pruned

task
vector

Yu, Le, et al. "Language models are super mario: Absorbing abilities from homologous models as a free
lunch." Forty-first International Conference on Machine Learning. 2024.

τ1 τ2 τ3

*α1 *α2 *α3

https://arxiv.org/pdf/2311.03099
https://arxiv.org/pdf/2311.03099

Merging Algorithms
● DARE Linear

○ derive task vectors

○ Drop: randomly zero out a fraction (1 - d) (Bernouli(d) masks) of the
tensor entries to preserve vector elements with density d

○ And

○ REscale: rescale remaining ones by 1/d to approximate expected
value of the original embeddings

○ weighted sum refined task vectors

Yu, Le, et al. "Language models are super mario: Absorbing abilities from homologous models as a free
lunch." Forty-first International Conference on Machine Learning. 2024.

https://arxiv.org/pdf/2311.03099
https://arxiv.org/pdf/2311.03099

Merging Algorithms
● TIES (density, weights)

Trim Sign Elect Disjoing
Merge

Prune task
vector with top
k% important
parameters

Resolve sign:
Determine +/-

for each
parameter by
summing up

Merge: For every
parameter,

average over
those with

correct sign.

Trim:
preserve

top-d
values

Elect Sign:
majority sign

selection

Disjoint Merge

weighted sum
over majority sign
aligned element

Yadav, Prateek, et al. "Ties-merging: Resolving interference when merging
models." Advances in Neural Information Processing Systems 36 (2023): 7093-7115.

https://arxiv.org/pdf/2306.01708
https://arxiv.org/pdf/2306.01708

Merging Algorithms
● TIES

○ derive task vectors

○ TrIm: prune task vector by magnitude, preserve top-d important
parameters

○ Elect Sign : Determine +/- for each parameter by summing up
(total/frequency)

○ Disjoint Merge: weighted sum over majority sign aligned elements

Yadav, Prateek, et al. "Ties-merging: Resolving interference when merging
models." Advances in Neural Information Processing Systems 36 (2023): 7093-7115.

https://arxiv.org/pdf/2306.01708
https://arxiv.org/pdf/2306.01708

Merging Algorithms
● TIES

Ref. Yadav, Prateek, et al. "Ties-merging: Resolving interference when merging
models." Advances in Neural Information Processing Systems 36 (2023): 7093-7115.

https://arxiv.org/pdf/2306.01708
https://arxiv.org/pdf/2306.01708

Merging Algorithms
● SCE (density)

Select
(prune)

consider
element

variances
between

task vectors

Calculate
coefficient

calculate the
sum of

squares of
elements

Erase
minority
elements

select
majority sign
of elements

Disjoint
Merge

weighted sum
over majority
sign aligned

element

Wan, Fanqi, et al. "Fusechat: Knowledge fusion of chat models."
arXiv preprint arXiv:2408.07990 (2024).

https://arxiv.org/pdf/2408.07990

Merging Algorithms
● SCE v.s. TIES

○ Select – similar to pruning,
further consider variations
across different task vectors

○ Trim – prune each task
vector individually

…τ1 τ2 τ3 τ n

Variance

top-k

SCE (select across vectors)

TIES (trim individually)

…τ1 τ2 τ3 τ n

Magnitude

top-k

Merging Algorithms
● SCE

○ derive task vectors

○ S: select top-k variance elements in matrices (among different
task vectors)
■ v.s. TIES (pruning individually)

○ C: sum of squares of elements to obtain merging coefficient for
each target LLM

○ E: filter elements with minority directions

Wan, Fanqi, et al. "Fusechat: Knowledge fusion of chat models."
arXiv preprint arXiv:2408.07990 (2024).

https://arxiv.org/pdf/2408.07990

Merging Algorithms
● SCE

Ref. Wan, Fanqi, et al. "Fusechat: Knowledge fusion of chat
models." arXiv preprint arXiv:2408.07990 (2024).

https://arxiv.org/pdf/2408.07990
https://arxiv.org/pdf/2408.07990

Merging Algorithms - TODO
● Implement SCE in peft

Reference Repo: acree-ai mergekit (Recommend)

https://github.com/arcee-ai/mergekit/blob/main/mergekit/merge_methods/sce.py

Merging Algorithms - TODO
● Additional functions for implementing SCE Algorithms

 def sce_weight(task_tensors: torch.Tensor) -> torch.Tensor:
Implementation of C step

Compute squared magnitude (energy) per task

 weights = torch.mean(task_tensors**2, dim=list(range(1, task_tensors.dim())))

Sum all weights to normalize

 weight_sum = torch.sum(weights).item()

Handle edge case: if all task tensors are 0, fallback to uniform weights

 if abs(weight_sum) < 1e-6:

 return torch.ones_like(weights) / weights.shape[0]

Normalize to form a probability distribution over tasks

 return weights / weight_sum

Ref 1: acree-ai mergekit (Recommend)
Ref 2: FuseChat mergekit

https://github.com/arcee-ai/mergekit/blob/main/mergekit/merge_methods/sce.py
https://github.com/fanqiwan/FuseAI/blob/main/FuseChat/mergekit/mergekit/merge_methods/sce_merging.py

Merging Algorithms - TODO
def sce_mask(task_tensors: torch.Tensor, density: float, mask_dtype: Optional[torch.dtype] = None):

 # Implementation of S step (sce_mask)

 if density <= 0: # If density is zero, mask out everything

 return torch.zeros_like(task_tensors, dtype=mask_dtype)

 if density >= 1: # If density is one, keep everything

 return torch.ones_like(task_tensors, dtype=mask_dtype)

 var = torch.var(task_tensors, dim=0, unbiased=False) # Compute variance over the task dimension (T) for

each parameter

 nonzero = torch.count_nonzero(var) # Count how many parameters have non-zero variance

 k = int(nonzero * density) # Compute number of parameters to keep based on density

 if k == 0:

 return torch.zeros_like(task_tensors, dtype=mask_dtype)

 _, indices = torch.topk(var.abs().view(-1), k=k, largest=True) # Select the indices of top-k variances

 # Build binary mask with 1s in selected indices

 mask = torch.zeros_like(var, dtype=mask_dtype)

 mask.view(-1)[indices] = 1

 return mask

2025/05/21 Update: TODO - download and modify peft
package
● Download and modify TA-version peft package; either

○ Use terminal commands to download and unzip the peft package. After making your modifications
on Colab or Kaggle, install the package in editable mode (pip install -e .) so that the modified
version can be used directly on Colab/Kaggle.

○ Download and modify the peft package on your local machine, then upload the modified version to
Google Drive. After that, install it on Colab/Kaggle to use the updated package.

● Google Drive Links: link1, link2, link3, link4

● Either modify existing algorithms or add new algorithms into peft package

● modules to be modified
○ add functions to include your own merging methods peft/src/peft/utils/merge_utils.py
○ add combination_type:

peft/src/peft/tuners/lora/model.py LoraModel.add_weighted_adapter()

https://drive.google.com/file/d/1HK8q4l7aMI6MjNdeJyzLCqbgM8lZCAZV/view?usp=drive_link
https://drive.google.com/file/d/1eEtVtCjUj4HnAJLNh5nLp2ZZISYva-vH/view?usp=drive_link
https://drive.google.com/file/d/1tzzsvwFzL4x6L76AG8ibKpB1dXEvHEW0/view?usp=drive_link
https://drive.google.com/file/d/1SK9PxF23LdMnvKvi7q4R-R9iccQ9KLXX/view?usp=drive_link

TODO - how to modify peft package
in peft/src/peft/utils/merge_utils.py:

def ties(
 task_tensors: List[torch.Tensor],
 weights: torch.Tensor,
 density: float,
 majority_sign_method: Literal["total", "frequency"] = "total",
) -> torch.Tensor:

…
sparsify

 # Elect Sign
 # weighted task tensors
 # Disjoint Merge
 return…

todo: Add new methods, reuse modules in other algorithms
e.g. if you want to implement “sce” algorithm

def sce(task_tensors, density, majority_sign_method) -> torch.Tensor:
…
return …

TODO - how to modify peft pachage
in peft/src/peft/tuners/lora/model.py:
todo: import function of new methods here ####
 from peft.utils.merge_utils import magnitude_prune, ties

class LoraModel:
def add_weighted_adapter(self, adapters, weights, adapter_name, combination_type, density,
majority_sign_method):

…
if …

…
todo: remember to add func names of new methods here
elif combination_type in ["linear", "ties", "dare_linear", "dare_ties", "magnitude_prune"]:

…

def _generalized_task_arithmetic_weighted_adapter(self, combination_type, adapters, weights, target,
 density, majority_sign_method):

…
todo: remember to add corresponding combination_type to call functions here
elif combination_type == "ties":

 lora_deltas[i] = ties(task_tensors, valid_weights, density, majority_sign_method)

2025/05/21 Update: TODO - Install modified peft on
Colab/Kaggle
● Install customized peft package in editable mode on colab notebook
On colab/kaggle

username = "github_user_name"
peft_repo = "private_peft_repo_name"
token = "your_github_repo_access_token"
repo = f"github.com/{username}/{peft_repo}.git"
pip install git+https://{username}:{token}@{repo}

● remember to add new if/else conditions in the sample code to merge weights
with new algorithms in peft package

%cd /content/drive/MyDrive/ml2025_hw9/peft-ml2025-hw9 #peft package path

!pip install -e . # install modified package in editable mode

add src directory to system path

%cd /content

import sys

sys.path.append("/content/drive/MyDrive/ml2025_hw9/peft-ml2025-hw9/src")

TODO - experiment with different algorithms
● merge in possible (weights, density) pairs and inference on two tasks

● modify generation config

● select the optimal results, save 400 {“id”: “response”} pairs to a json file
and submit to Judgeboi
○ e.g. {{“arc_1”: “Therefore, option (A) is the correct answer.”}, …}

Estimate inference time: 2~4 hr /400 samples (Colab T4)

Hints
● Experiment with or without some steps in an algorithm to understand which

step plays more important role in merging.

● “Pruning” sometimes mitigate parameter interference effectively, but this
condition may change in other algorithms.

● Modify GenerationConfig (hyperparamter tuning) (ref 1, ref 2, hw5 ppt)
○ decoding strategy: greedy decoding (do_sample=None), temperature, top-k,

top-p, beam search(num_beam > 0)
○ max length of generation: max_new_len (also affect inference time)

● Print and observe the generated responses during inference to assess whether
a new merging configuration might lead to improved performance.

https://huggingface.co/blog/how-to-generate#beam-search
https://huggingface.co/blog/mlabonne/decoding-strategies

Hints
● Possible reasons for long inference (> 4 hr):

○ max_new_length (default: 400)
○ beam search (when num_beam > 1)
○ degeneration (repetition, illogical or redundant texts) because of strong

parameter interference

[Reminder!] For arithmetic reasoning tasks like GSM8K, a step-by-step reasoning process is
essential. The correctness of intermediate steps plays a critical role, as any logical or
computational mistake along the way can ultimately result in an incorrect final answer.

[Suggestion!] Pay particular attention to the consistency between intermediate reasoning
steps and the final selected option. (If the predicted answer doesn't exactly match one of the provided choices,
model may choose the closest matching answer rather than the correct one.)

Grading and Submission

Grading and Submission - Baselines & Grading
ARC Acc. GSM8K Acc. Score Hint

Estimated
Inference

Time

2~4hr /400q

Public Simple Baseline ≥ 49% ≥ 38% +1

Task
Arithmetic,
Magnitude
Prune, TIES,

DARE,
SCE

Private Simple Baseline +1

Public Medium Baseline ≥ 53% ≥ 42% +1

Private Medium Baseline +1

Public Strong Baseline ≥ 56% ≥ 48% +1

Private Strong Baseline +1

Code Submission - - +4

Grading and Submission - Judgeboi
● Please submit the pred.json to judgeboi. (only .json file is allowed)

● The prediction file (pred.json) must follow the below structure:
○ Root must be a dictionary ({}).
○ Each key must be a string representing an ID (e.g., "arc_1",

"gsm8k_32").
○ Each value must be a string containing the model-generated

response without input prompt.

● 5 submission quota per day, reset at 23:59 (UTC+8).

● Each submission takes about a minimum of 6~7 minutes to evaluate.

Grading and Submission - NTU COOL
submit before deadline: 2025/06/06 23:59:59 (UTC+8).

No late submission is allowed.

● Submit your code to NTU COOL. (4 points)
○ Please remember to submit all the .py files you have modified or added in the peft package. These

files will be used by the TAs to reproduce your code (merging settings). During the reproduction
process, the TA will replace the corresponding files in the original TA version of the peft package
with the ones you submitted.

○ Remember to submit the main .ipynb file or .py scripts that cover the complete inference process.
○ DO NOT INCLUDE YOUR PRIVATE TOKEN IN YOUR SUBMISSION.
○ You need to provide a README, regardless of the program execution environment.
○ In the README, you must specify the absolute path (peft package) of modified files. This is to help

the TAs correctly replace and overwrite the corresponding files during the reproduction process.
○ We can only see your last submission.
○ Compress your code into _hw9.zip. (e.g. b13901001_hw9.zip)
○ After TAs unzip your _hw9.zip, all your files should locate under a directory called _hw9.
○ All the English alphabets in your student ID should be in lowercase.

Grading and Submission - NTU COOL
● How to write a README?

○ For the submitted files related to the peft package, clearly specify its absolute path within
the peft package, e.g. “b13901001_hw9_1.py: /peft/src/peft/utils/merge_utils.py”

○ Specify your environment(colab, kaggle…) and GPU(T4, T4*2, P100…).
○ List all references used to finish the homework.

■ Which part of code is generated by which model(GPT, Gemini, Grok…). Shared link for
the chat is better.

■ Website link, NTU Cool discussion, Offline discussion with classmates(Student IDs)...
○ If you run the code in your environment instead of colab or kaggle.

■ Specify the python version.
■ Provide a requirements.txt for additional installed packages.

○ If you decompose sample code into multiple scripts.
■ Specify the function of each file.
■ Provide a step-by-step instruction for running your scripts with correct commands

and execution order.
○ If you have no idea.

■ Ask README Generator.

https://chatgpt.com/g/g-wpMtgVmzG-readme-generator/c/67eb7775-5ac4-8008-9269-97931f9abef2

Grading and Submission - NTU COOL
● README Example

○ To assist TAs in automatically reproducing your results, please clearly list any
files you have modified or added within the PEFT package.

○ Provide a code block tagged as `replace` with the following format:
```replace  <your_filename.py>: <absolute_path_in_peft> ```

# In README.md
## Main file
```main
b13901001_hw9_1.ipynb
```

## PEFT Package Modification for TA Reproduction
```replace
b13901001_hw9_2.py: /peft/src/peft/utils/merge_utils.py
b13901001_hw9_3.py: /peft/src/peft/tuners/lora/model.py
```

http://readme.md


Grading and Submission - NTU COOL
● Structure of the zipped file: 

○ _hw9 
■ _hw9_1.ipynb or .py 
■ _hw9_2.ipynb or .py
■ … 
■ README.md 

● Examples for valid structure of the zipped file: 
○ b13901001_hw9 

■ b13901001_hw9_1.ipynb 
■ b13901001_hw9_2.py 
■ b13901001_hw9_3.py 
■ README.md



Grading and Submission - NTU COOL
● If your code is not reasonable or reproducible, you will receive 0 points for 

this homework.
● Deadline: 2025/06/06 (Fri.) 23:59 (UTC +8) 



Regulations
● Do NOT share codes or prediction files with any living creatures.
● Do NOT use any approaches to submit your results more than 5 times a day.
● During the inference of 400 questions, you must use the same merged model. (consistent 

merging setting, any cheating is not allowed)
● You are NOT allowed to fine-tune your own ckpts of two tasks in this homework.
● You are NOT allowed to modify instructions, questions and options (prompts) in HW9.
● All refining code should also be included in the code submission, involving all modified 

files/modules in your peft package.
● You should NOT modify your input file or prediction files manually. 
● Do NOT search for the answers for the inference data.
● Make sure that TAs can reproduce the predictions using the code you submit.
● Please protect your own work and ensure that your answers are not accessible to others. If 

your work is found to have been copied by others, you will be subject to the same penalties.
● You will receive 0 points for this homework if you violate any of the above rules.
● Prof. Lee & TAs preserve the rights to change the rules & grades.



If any questions, you can ask us via...
● NTU COOL (recommended)

● Email 
ntu-ml-2025-spring-ta@googlegroups.com 
The title should begin with “[hw9]”

● TA hours 
Each Friday During Class 
Time : 13:30 - 14:10 ; 17:30 - 18:00

mailto:ntu-ml-2025-spring-ta@googlegroups.com


Reference



Reference
base model: https://huggingface.co/unsloth/llama-2-7b-chat-bnb-4bit

PEFT related: 
https://huggingface.co/docs/peft/index, 
https://huggingface.co/docs/peft/developer_guides/model_merging

papers of Merging Algorithms: Task Arithmetic, TIES, DARE, SCE

Mergitkit: acree-ai mergekit, FuseChat mergekit

https://huggingface.co/unsloth/llama-2-7b-chat-bnb-4bit
https://huggingface.co/docs/peft/index
https://huggingface.co/docs/peft/developer_guides/model_merging
https://arxiv.org/pdf/2212.04089
https://arxiv.org/pdf/2306.01708
https://arxiv.org/pdf/2311.03099
https://arxiv.org/pdf/2408.07990
https://github.com/arcee-ai/mergekit/blob/main/mergekit/merge_methods/sce.py
https://github.com/fanqiwan/FuseAI/blob/main/FuseChat/mergekit/mergekit/merge_methods/sce_merging.py

