

Post-Training & Forgetting 後訓練與遺忘

Post-Training (Continual Learning) 避免「還在GO」 的 Post-training

 Pre-train Style
 Ave Mujica的人氣正在迅速上
 升

實際案例:教LLaMA-2-Chat中文

Shih-Cheng Huang (TAIDE member) https://arxiv.org/abs/2310.04799

https://arxiv.org/abs/2310.04799

實際案例:教LLaMA-2-Chat中文

<s> [INST] 氣候變化是如何影響生態系統的? [/INST]

Llama-2-7b-chat

Climate change can have significant impacts on ecosystems around the world. Here are some of the ways in which climate change can affect ecosystems:

1. Temperature changes: Rising temperatures can alter the distribution and abundance of plants and animals, disrupting food webs and ecosystem processes.

2. Changes in precipitation patterns: Shifts in precipitation patterns, such as more frequent droughts or heavy rainfall events, can alter the distribution of water resources and affect the growth and survival of plants and animals.

3. Sea-level rise: Rising sea levels can flood coastal ecosystems, including mangroves, salt marshes, and coral reefs, leading to the loss of habitat and biodiversity.

4. Ocean acidification: As the ocean absorbs more carbon dioxide from the atmosphere, it becomes more acidic, which can affect the growth and survival of marine organisms, particularly those with calcium carbonate shells, such as corals and shellfish.

Llama-2-7b-chat-cp

氣候變化對生態系統的影響主要有以下幾種方面的影響: 1. 氣候變化 對生態系統的影響主要有以下幾種方面的影響: 1. 氣候變化對生態系 統的影響主要有以下幾種方面的影響: 1. 氣候變化對生態系統的影響 主要有以下幾種方面的影響: 1. 氣候變化對生態系統的影響主要有以 下幾種方面的影響:

Examining Forgetting in Continual Pre-training of Aligned Large Language Models

https://arxiv.org/abs/2401.03129

with ASUS Open Cloud Infrastructure Software Center

	Truth	nfulQA	Toxi	iGen	
	mo	:2↑	toxic	rity↓	
	EN	TW	EN	TW	
Llama-2-7b	39.0	45.9	20.30	24.80	
Llama-2-7b-chat	44.6	49.7	0.03	0.22	
Llama-2-7b-chat-cp	40.2	48.5	0.05	5.74	
FREEZE FIRST 10	41.7	48.5	0.08	7.12	
FREEZE LAST 10	40.4	48.8	0.01	4.69	
FREEZE ATTN.	41.6	48.8	0.04	3.15	
ONLY ATTN.	40.8	48.6	0.04	3.27	
FREEZE MLP	40.9	48.8	0.0	3.31	
ONLY MLP	41.3	48.8	0.04	3.39	
LORA	43.6	49.1	0.03	0.79	
LORA (3e-4)	42.5	48.9	0.07	7.97	
(IA) ³	44.2	49.8	0.0	0.17	
$(IA)^3$ (3e-4)	43.0	49.9	0.0	0.11	

Examining Forgetting in Continual Pre-training of Aligned Large Language Models

https://arxiv.org/abs/2401.03129

with ASUS Open Cloud Infrastructure Software Center

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

https://arxiv.org/abs/2310.03693

Hua Farn

https://arxiv.org/abs/2412.19512 Foundation Model: Llama-3-8B-Instruct

SFT Style

	Method	Dataset	OpenFunctions	GSM8K	HumanEval	Average
Foundation Model	Seed LM		19.6	29.4	13.4	20.8
Fine-tuned Model	Vanilla FT	OpenFunctions GSM8K MagiCoder	34.8 17.9 3.6	21.5 31.9 23.2	9.8 12.2 18.9	22.0 20.7 15.2

https://arxiv.org/abs/2402.13669

- Post-training enhances performance on the target tasks.
- Post-training degrades the model's performance on other tasks.

model	LLM	Speech encoder	Repo
Qwen-Audio	Qwen	Whisper-large-v2	https://github.com/QwenLM/Qwen-Audio
SALMONN	Vicuna 7, 13B	Whisper-Large-v2, BEATs	https://github.com/bytedance/SALMONN
LTU-AS	Vicuna 7B	Whisper-large	https://github.com/YuanGongND/Itu
BLSP	Llama-2-7B	Whisper-small	https://github.com/cwang621/blsp
BLSP-EMO	Qwen-7B-Chat	Whisper-large-v2	https://github.com/cwang621/blsp-emo
NExT-GPT	Vicuna 7B	ImageBind	https://github.com/NExT-GPT/NExT-GPT
SpeechGPT*	LLaMA 7B	HuBERT	https://github.com/0nutation/SpeechGPT/tree/main/speechgpt
PandaGPT	Vicuna-13B	ImageBind	https://github.com/yxuansu/PandaGPT
WavLLM	LLaMA-2-7B-chat	Whisper-large-v2, WavLM Base	https://github.com/microsoft/SpeechT5
audio-flamingo	OPT-IML-MAX-1.3B	ClapCap	https://github.com/NVIDIA/audio-flamingo
LLM Codec*	LLaMA 2 7B	LLM Codec	https://github.com/yangdongchao/LLM-Codec
AnyGPT*	Llama-2-7B	SpeechTokenizer, Encodec	https://github.com/OpenMOSS/AnyGPT
LLaSM	Chinese-LLAMA2-7B Baichuan-7B	Whisper-large-v2	https://github.com/LinkSoul-AI/LLaSM
VideoLLaMA	Vicuna 7B/13B	ImageBind	https://github.com/DAMO-NLP-SG/Video-LLaMA
VideoLLaMA2	Vicuna 7B	BEATs	https://github.com/DAMO-NLP-SG/VideoLLaMA2
Macaw-LLM*	LLaMA 7B	Whisper-base	https://github.com/lyuchenyang/Macaw-LLM
VAST	BERT	BEATs	https://github.com/TXH-mercury/VAST
MU-LLaMA	LLaMA 7B	MERT	https://github.com/shansongliu/MU-LLaMA
M2UGen	LLaMA	MERT	https://github.com/shansongliu/M2UGen
MusiLingo	Vicuna	MERT	https://github.com/zihaod/MusiLingo
SLAM-LLM	LLaMA, Vicuna, etc.	Whisper, HuBERT, WavLM, etc.	https://github.com/X-LANCE/SLAM-LLM

The table is from Yi-Cheng Lin.

Real examples provided by Ke-Han Lu

Text Instruction: What is the emotion of the speaker? Answer the question with JSON format (use "answer" as key).

Real examples provided by Ke-Han Lu

更多案例:教 LLaMA 聽聲音

Text Instruction: What is the emotion of the speaker? Answer the question with JSON format (use "answer" as key).

Post-Training 的挑戰

Catastrophic Forgetting

比較大的模型 forgetting 的狀況沒有比較輕微 (1B-7B)

An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning https://arxiv.org/abs/2308.08747

Scaling Laws for Forgetting When Fine-Tuning Large Language Models

https://arxiv.org/abs/2401.05605

LoRA Learns Less and Forgets Less https://arxiv.org/abs/2405.09673

LoRA Learns Less and Forgets Less

https://arxiv.org/abs/2405.09673

Catastrophic forgetting 像是 「手術成功,病人卻死了」

Question	Context	Answer	$\left[\right]$	Question	Context	Answer
What is a major importance of Southern California in relation to California and the US?	Southern California is a major economic center for the state of California and the US	major economic center		What has something experienced?	Areas of the Baltic that have experienced eutrophication.	eutrophication
What is the translation from English to German?	Most of the planet is ocean water.	Der Großteil der Erde ist Meerwasser		Who is the illustrator of Cycle of the Werewolf?	Cycle of the Werewolf is a short novel by Stephen King, featuring illustrations by comic book artist Bernie Wrightson.	Bernie Wrightson
What is the summary?	Harry Potter star Daniel Radcliffe gains access to a reported £320 million fortune	Harry Potter star Daniel Radcliffe gets £320M fortune		What is the change in dialogue state?	Are there any Eritrean restaurants in town?	food: Eritrean
Hypothesis: Product and geography are what make cream skimming work. Entailment, neutral, or contradiction?	 Premise: Conceptually cream skimming has two basic dimensions – product and geography 	Entailment		What is the translation from English to SQL?	The table has column names Tell me what the notes are for South Australia	SELECT notes from table WHERE 'Current Slogan' = 'South Australia'
Is this sentence positive or negative?	A stirring, funny and finally transporting re-imagining of Beauty and the Beast and 1930s horror film.	positive		Who had given help? Susan or Joan?	Joan made sure to thank Susan for all the help she had given.	Susan

The Natural Language Decathlon: Multitask Learning as Question Answering

https://arxiv.org/abs/1806.08730

Fan-Keng Sun (NTU)

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

Source of image: https://arxiv.org/abs/1606.05250 In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called "showers".

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Fan-Keng Sun (NTU)

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

Fan-Keng Sun (NTU)

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

GPT-2 -	SQuAD (閱讀測驗)	Fine-tuned GPT-2							
	אנייי נאז אַפָּא נטיז)			SQuAD	WikiSQL	SST	SRL	WOZ	Z
GPT-2 -	SST	Fine-tuned	GPT-2 score Other scores	72.3 75.5	70.7 72.6	90.9 88.1	70.4 75.2	70.4 84.9 75.2 84.4	
	(情感分析)	0112		AGNews	Amazon	DBPec	lia Y	ahoo	Yelp
	WikiSQL	Fine-tuned	GPT-2 score Other scores	94.6 93.8	62.3 60.1	99.1 30.5	7	3.9 8.6	67.7 50.7
GF1-2 -	(SQL指令)	GPT-2							

• Experience Replay

Fan-Keng Sun (NTU)

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

Catastrophic Forgetting is not a problem!

Experience replay is very effective, and we can always store some data from previous tasks to prevent catastrophic forgetting.

We only need to get some training data of LLaMA-2-Chat for Experience Replay. ③

Wait We don't have the training data of LLaMA-2-Chat.

Catastrophic Forgetting is a real problem!

Back to old study of Catastrophic Forgetting

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

Back to old study of Catastrophic Forgetting

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

The United States has been accused of a wide ranging war in Afghanistan since 9/11. During the campaign, US forces in Afghanistan were involved in an extensive air campaign. At least 1,600 American servicemen and women were killed, while more than 1,600 civilians were injured. After the US-led invasion of Afghanistan on 12/11/2001, an estimated 10,000 American soldiers were killed in combat. What were the targets included in the conflict? *ANS:* Afghanistan

In 1849, the French army was forced to withdraw, and the French were finally expelled, although it was not until late November that the French recaptured most of their territories. French troops then reached Egypt. On 21 January 1852 (the year after he left), in Cairo, they captured Tripoli, Benghazi, Benghazi, and the eastern part of Libya. After Gaddafi's return to office, he established the Gaddafi regime. On 13 February 1856, the Gaddafi family relocated to Egypt. On 13 May 1857, the army was forced to withdraw from Libya, and the army returned to Benghazi. On whom did Gaddafi's army return to Benghazi? *ANS:* Gaddafi's family

Back to old study of Catastrophic Forgetting

LAMOL: LAnguage MOdeling for Lifelong Language Learning

• During the year of GPT-2 ...

https://arxiv.org/abs/1909.03329

Fan-Keng Sun (NTU)

LAMOL: LAnguage MOdeling for Lifelong Language Learning

https://arxiv.org/abs/1909.03329

LAMAL: LAnguage Modeling Is All You Need for Lifelong Language Learning

Fan-Keng Sun, Cheng-Hao Ho, Hung-Yi Lee

LAMOL: LAnguage MOdeling for Lifelong Language Learning

Fan-Keng Sun, Cheng-Hao Ho, Hung-Yi Lee

Most research on lifelong learning applies to images or games, but not language. We present LAMOL, a simple yet effective method for lifelong language learning (LLL) based on language modeling. LAMOL replays pseudo-samples of previous tasks while requiring no extra memory or model capacity. Specifically, LAMOL is a language model that simultaneously learns to solve the tasks and generate training samples. When the model is trained for a new task, it generates pseudo-samples of previous tasks for training alongside data for the new task. The results show that LAMOL prevents catastrophic forgetting without any sign of intransigence and can perform five very different language tasks sequentially with only one model. Overall, LAMOL outperforms previous methods by a considerable margin and is only 2-3% worse than multitasking, which is usually considered the LLL upper bound. The source code is available at this https URL.

Safety-Tuned LLaMAs

Synthetic Data from Llama-3-Instruct

Magpie

Method	Dataset	OpenFunctions	GSM8K	HumanEval	Average
Seed LM		19.6	29.4	13.4	20.8
Vanilla FT	OpenFunctions GSM8K MagiCoder	34.8 17.9 3.6	21.5 31.9 23.2	9.8 12.2 18.9	22.0 20.7 15.2
SDFT (Ours)	OpenFunctions GSM8K MagiCoder	$\begin{array}{c} \textbf{36.6} \uparrow \textbf{1.8} \\ \textbf{17.9} \uparrow \textbf{0.0} \\ \textbf{8.0} \uparrow \textbf{5.4} \end{array}$	$\begin{array}{c} 29.1 \uparrow 7.6 \\ 34.4 \uparrow 2.5 \\ 24.9 \uparrow 1.7 \end{array}$	$15.2 \uparrow 5.4$ $14.6 \uparrow 2.4$ $18.3 \downarrow 0.6$	$\begin{array}{c} 27.0 \uparrow 5.0 \\ 22.3 \uparrow 1.6 \\ 17.1 \uparrow 1.9 \end{array}$

https://arxiv.org/abs/2402.13669

Method	MMLU	T.QA	gsm8k	HS	Avg
Prompt	58.7	59.6	44.7	66.1	57.3
SFT (MD2D)	-5.2	-25.3	-31.0	-5.2	-16.7
SSR (MD2D)	0.2	-2.5	-5.8	-1.2	-2.3
SFT (NQ)	-5.2	-19.8	-23.9	-1.8	-12.7
SSR (NQ)	-0.4	-1.1	-6.4	0.0	-2.0

Selective Self-Rehearsal https://arxiv.org/abs/2409.04787

	Method	Training Dataset and Model Type	GSM8K	Math Algebra	ECQA
	Groundtruth	GSM8K, Mistral	0.434	0.162	0.594
	GPT-4 Answer Directly		0.597	0.246	0.597
	Claude Answer Directly		0.586	0.230	0.595
	Groundtruth	GSM8K, Llama	0.364	0.141	0.565
	GPT-4 Answer Directly		0.428	0.128	0.575
	Claude Answer Directly		0.433	0.110	0.548
I Learn Better If You Sneak	Groundtruth	Math algebra, Mistral	0.264	0.206	0.554
	GPT-4 Answer Directly		0.553	0.302	0.608
My Language	Claude Answer Directly		0.554	0.277	0.606
https://arxiv.org/abs/2402.11192	Groundtruth	Math algebra, Llama	0.36	0.126	0.575
	GPT-4 Answer Directly	_	0.35	0.150	0.561
	Claude Answer Directly		0.317	0.137	0.54
	Groundtruth	ECQA, Mistral	0.258	0.134	0.68
	GPT-4 Answer Directly		0.462	0.223	0.722
	Claude Answer Directly		0.457	0.213	0.714
	Groundtruth	ECQA, Llama	0.132	0.0798	0.631
	GPT-4 Answer Directly		0.379	0.156	0.656
	Claude Answer Directly		0.38	0.129	0.678

Method	Model Type	GSM8K	Math Algebra	ECQA	MBPP	HumanEval	Avg Perplexity	Avg Token Length
GPT-4 Answer Directly	Mistra	0.597	0.302	0.722	0.354	0.365	3.81	164.642
Minimum Change on Mistral Predictions		0.562	0.314	0.699	0.354	0.409	2.47	133.944
Minimum Change on LlaMA Predictions		0.547	0.297	0.709	0.364	0.427	3.51	132.323
Average Token Length for Mistral Initial Predictions								152.993
GPT-4 Answer Directly	Llama	0.428	0.150	0.656	0.2	0.158	3.58	167.469
Minimum Change on LlaMA Predictions		0.433	0.166	0.649	0.2	0.213	2.75	132.323
Minimum Change on Mistral Predictions		0.402	0.161	0.647	0.218	0.183	3.32	133.945
Average Token Length for Llama Initial Predictions								165.793

Benchmark: Dynamic SUPERB

Task Instruction	Input	Output
Please identify the emotion in the aud answer could be	io. The	"Нарру"
Identify the total number of speakers audio	n the	"Two"
Do the speech patterns in the two aud recordings belong to the same speake	io ?	W "No"
The ICASSP 2024 versionhas 55 classification tasks.Chien-https://arxiv.org/abs/2309.09510Huang	/u (NTU) Work Wata	with Shinji nabe's team

The Dynamic SUPERB Phase-2 is coming!

- Call for tasks from March 14, 2024, to June 28, 2024.
- Project page: https://github.com/dynamic-superb/dynamic-superb
- The new version has **180** tasks.

Chien-yu

Huang (NTU)

Working with Shinji Watanabe's team

Working with David Harwath's team

The Dynamic SUPERB Phase-2 is coming!

https://arxiv.org/abs/2411.05361

(ICLR 2025)

Madala		Ι	AIR-Bench-Chat				
widdels	CON	SEM	PAR	DEG	SPK	ALL	Speech
Cascade baselines							
ASR + Llama3 (Ours)	71.45	51.52	15.07	36.00	41.70	43.59	7.01
Specialized Models + Llama3 (Ours)	82.32	63.08	25.71	59.61	40.50	58.31	7.32
End-to-end systems							
LTU-AS [6]	43.95	36.00	17.14	37.53	40.20	36.11	-
Salmonn [7]	52.00	50.75	24.50	28.16	33.20	36.44	6.16
BLSP-emo [21]	66.09	53.92	11.50	27.03	30.30	37.42	-
WavLLM [11]	53.31	51.00	24.60	36.83	22.24	39.07	-
Qwen-Audio [8]	61.77	47.17	28.64	30.95	41.40	40.79	6.47
BLSP [10]	51.82	58.25	36.00	42.76	44.80	46.00	6.17
Qwen2-Audio [9]	77.64	59.17	29.21	43.58	47.90	51.69	7.18
DeSTA2	79.41	59.42	43.14	51.63	42.50	56.78	7.16

Ours: only about 150 hours of training data (**Audio captioning only**, English only) Qwen2-Audio: at least 500k hours of data, with SFT and DPO.

Chao-Chung Wu (Appier's researcher)

Question: Given a mathematics problem, determine the answer.\nProblem : Let the reciprocals of the roots of $5x^2 + 3x + 4$ be α and β . Evaluate $\alpha + \beta$.\nAnswer:\$ **Ground Truth:** Denote the roots of $5x^2 + 3x + 4$ by a and b. We have that $\alpha = \frac{1}{\alpha}$ and $\beta = \frac{1}{b}$. So, $\alpha + \beta = \frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}$. Now, we know that $a+b = \frac{-3}{5}$ and $ab = \frac{4}{5}$ by the relationship between sum/products of roots and the coefficients of a polynomial. Hence $\alpha + \beta = \frac{a+b}{ab} = \left| -\frac{3}{4} \right|$ **Self-Output (Llama3-8B Instruct):** Let r_1 and r_2 be the roots of $5x^2 + 3x + 4$. Then, by Vieta's formulas, we have $r_1+r_2 = -\frac{3}{5}$ and $r_1r_2 = \frac{4}{5}$. Let r_1 and r_2 be the roots of $5x^2 + 3x + 4$. Then, by Vieta's 1 or $1 + 1 + 1 + 2 = -\frac{3}{5}$ and $r_1r_2 = -\frac{4}{5}$. METHOD AVERAGE PERPLEXITY Data $r_2 + r_1$ MBPP **GROUND TRUTH** 4.83 (7.04) 1.69 (0.16) Rephrase Self-Output 1.16(0.01)**Red:** difficult to predict MATH **GROUND TRUTH** 2.45(0.81)2.11 (9.28) Rephrase Self-Output 1.34(0.03)

假設我們想要教模型說「大<u>家</u>好,我是……」 difficult to predict

Chao-Chung Wu (Appier's researcher)

https://arxiv.org/abs/2501.14315

Chao-Chung Wu (Appier's researcher)

https://arxiv.org/abs/2501.14315

Concluding Remarks

Post-training 時人工智慧容易 遺忘過去的技能

用人工智慧自己說的話來做 Post-training

