LANGUAGE MODELING FOR
SPEECH RECOGNITION
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Why Language Model?

e Language model (LM): Estimated the probability of
token sequence

* Token sequence: Y =y, V5, ... ... » Vn
o P(yl,yz, ...... ,yn)

HMM Y* = arg méaxP(X|Y)P(Y)

LM is usually helpful when your
model outputs text

LAS Y* =arg m‘?XP(Y|X) PSY%

Need paired data Easy to collect



https://numberofwords.com/fag/how-many-words-are-in-a-1-minute-speech/

Why we need LM?

Y* =arg m&xP(Y|X) P(Y)

Need paired data Easy to collect

Words in Transcribed Audio 12,500 hours transcribed audio

=12,500x 60 x 130 ~ —{¥!
(TS AR FF =4 100 S {E )



e

Moschitta had been credited in The Guinness Book of World Records
as the World's Fastest Talker

Source of video: https://youtu.be/ExKCcndgK5c



https://numberofwords.com/fag/how-many-words-are-in-a-1-minute-speech/

Why we need LM?

Y* =arg m&xP(Y|X) P(Y)

Need paired data Easy to collect

Words in Transcribed Audio 12,500 hours transcribed audio

=12,500x60x 130 ~ —{E!

BERT: ("SRR FRF2E4Y 100 H {EEH)
https://youtu.be/UYPa347-DdE
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P(“wreck a nice beach”)

N_g ram =P(wreck|START)P(a|wreck)

P(nice|a)P(beach|nice)

* How to estimate P(yq, Vo, .. ... , Vi)
* Collect a large amount of text data as training data

* However, the token sequence y4, 5, ... ... , Yy, May not
appear in the training data

* N-gram language model: P(y{, V5, ... ... V) =
POAIBOSYP(217) - PGilynes) g e
* E.g. Estimate P(beach|nice) from training data

C (nice beach) +— Count of “nice beach”

C(nice) < Count of “nice”

P(beach|nice) =

* |t is easy to generalize to 3-gram, 4-gram ......



Challenge of N-gram

* The estimated probability is not accurate.
* Especially when we consider n-gram with large n

e Because of data sparsity (many n-grams never
appear in training data)

(0

The dog ran ......

Training Data: The cat jumped ......

—/

P(jumped | the, dog) =8 0.0001 | Give some small
P(ran | the, cat) =8, 0.0001 | Probability

This is called language model smoothing.




Continuous LM

 Recommendation system

A 5 1
B 5 1

C 5 2
D 1 4 4
E 1 5 4

Matrix Factorization
Ref: https://youtu.be/iwh50 _M4BNU?t=4673



Borrowing the idea from
recommendation system

Continuous LM

‘ dog cat i ... child * history
ran 2 3 1
jumped_ 0 2 1
Vocabulary I ried ;J 0 0 3
laughed 0 0 \\ 3
Not observed N Count of “cat jumped”
. Minimizin
v! h’ are vectors to 8 , _ 2
be learned L= Z(vl - h) — nij)

Ny, = v?-hl.. vt, hJ found by gradient descent



Borrowing the idea from
recommendation system

Continuous LM

‘ dog cat (| e child * history
ran 2 3 1
jumped_ 0 2 1
Vocabulary [1 ¢ried PE o 0 3
laughed 0 0 \\ 3
. \
Not observed R Count of “cat jumped”

History “dog” and “cat” can have similar vector hd°¢ and het
If viumped . heat js [grge, viumped . hdog would be large accordingly.
Even if we have never seen “dog jumped ...”

Smoothing is automatically done.



L= Z(Ui . hJ —Tlij)z
Continuous LM @

target

history vocabulary from training
1-of-N data
encoding Consider it as a NN ......



NN-based LM

* Training:

Collect data:
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NN-based LM

P(“wreck a nice beach”)

=P(wreck|START)P(a|wreck)P(nice|a)P(beach|nice)

P(b|a): the probability of NN predicting the next word.

P(next word is

“wreck”)
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i-th output = P(w, = i| context)
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Wi = 1 (0 otherwise)

RNN-based LM O

[Mikolov, et al., INTERSPEECH’10]
ran cried

If we use 1-of-N encoding to
represent the history, history ran
cannot be very long.

cried




output

Can be very complex ...... -(}\
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LSTM with proper optimization and Stgm_, Shit O YRR

regularization can be good. e
[Merity, et al., ICLR’18]
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How to use LM to improve LAS?

how to integrate

A
-
Output Hidden
-
Aft(?r Shallow Fusion | Deep Fusion
when to . Training
integrate Be.fo.re Cold Fusion
Training




LM - Trained Py(y)
Size V

Shallow 1 1
Fusion — ‘
[Kannan, et al., ICASSP’18] T T
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{ Py (y)
Size V
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If you change your LM

C
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1 Deep
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[Gulcehre, et al., arXiv'15]




Before

_ Py (y) _ SoftMax
Size V Size V
1 t Can swap
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Before

Network —

, SoftMax
. Size V
Cold Fusion
[Sriram, et al., INTERSPEECH’18] |
LM is already I
trained
e LAS converges faster
during training
* LAS has to be trained again ‘
if you have a new LM. l
I

LAS is trained
from scratch

: max

Need to be
trained



Concluding Remarks

how to integrate

A
-
Output Hidden
g
Aftgr Shallow Fusion | Deep Fusion
when to . Training
integrate Be.fo.re Cold Fusion
Training
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