Eigenvalues and Eigenvectors Hung-yi Lee

Chapter 5

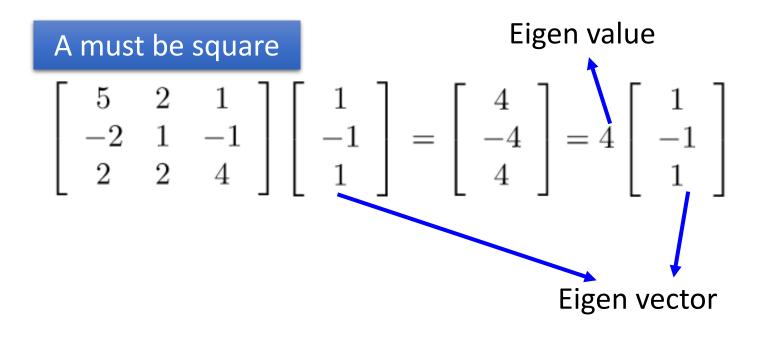
- In chapter 4, we already know how to consider a function from different aspects (coordinate system)
- Learn how to find a "good" coordinate system for a function
- Scope: Chapter 5.1 5.4
 - Chapter 5.4 has *

Outline

- What is Eigenvalue and Eigenvector?
 - Eigen (German word): "unique to" or "belonging to"
- How to find eigenvectors (given eigenvalues)?
- Check whether a scalar is an eigenvalue
- Reference: Textbook Chapter 5.1

What is Eigenvalue and Eigenvector?

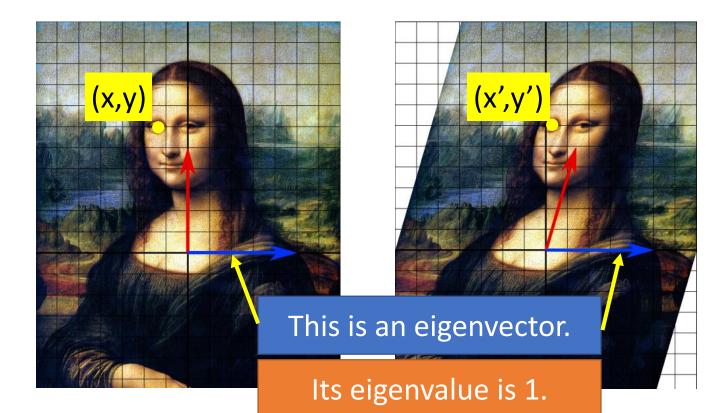
- If $Av = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of A excluding zero vector
 - λ is an eigenvalue of A that corresponds to v



- If $Av = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of A excluding zero vector
 - λ is an eigenvalue of A that corresponds to v
- T is a *linear operator.* If $T(v) = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of T excluding zero vector
 - λ is an eigenvalue of T that corresponds to v

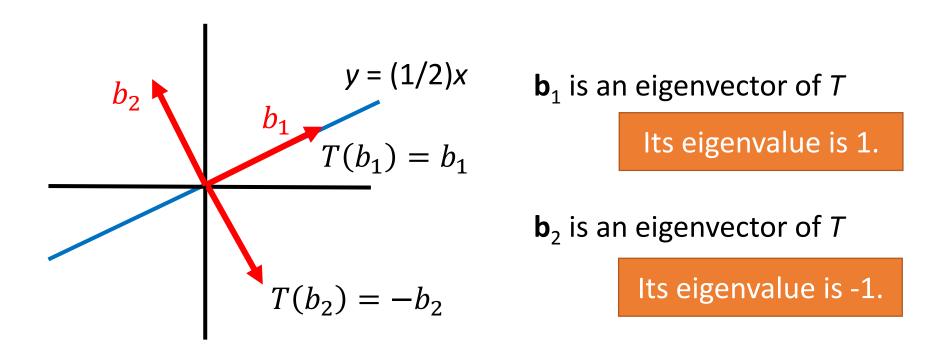
• Example: Shear Transform

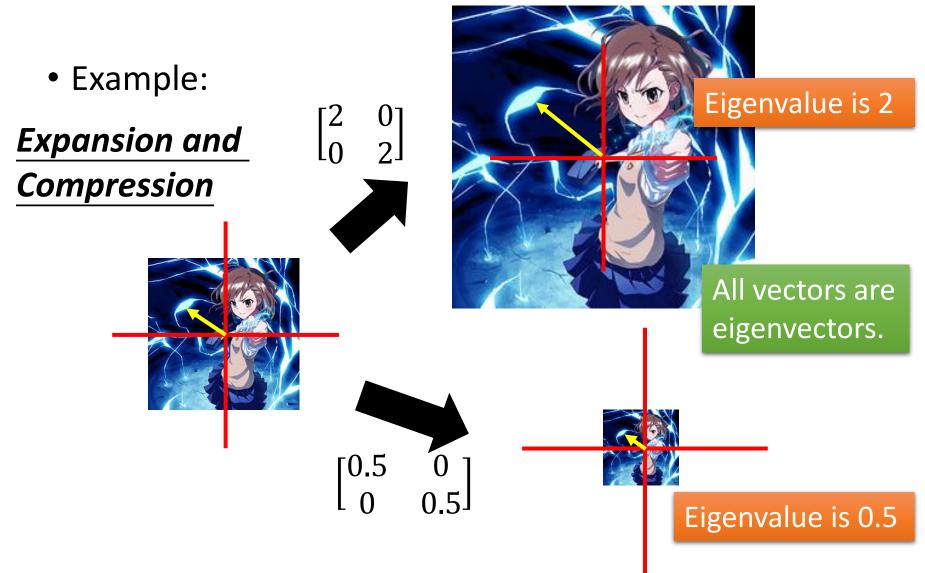
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right)$$



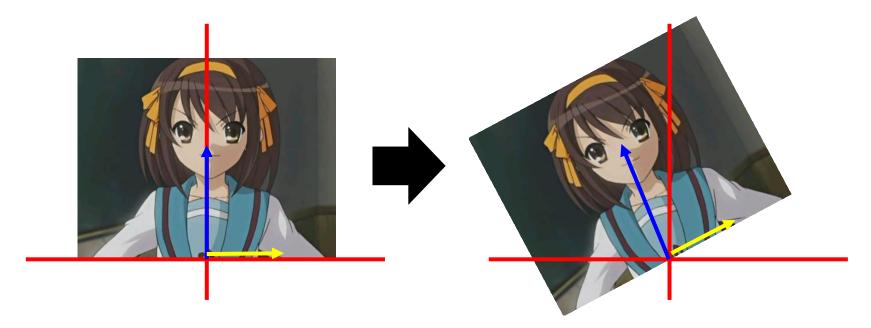
• Example: Reflection

reflection operator T about the line y = (1/2)x





• Example: Rotation



Do any n x n matrix or linear operator have eigenvalues?

How to find eigenvectors (given eigenvalues)

- An eigenvector of *A* corresponds to a unique eigenvalue.
- An eigenvalue of A has infinitely many eigenvectors.

Example:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \quad v = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad u = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
Eigenvalue= -1
Eigenvalue= -1

Do the eigenvectors correspond to the same eigenvalue form a subspace?

Eigenspace

 $A\mathbf{v} = \lambda \mathbf{v}$

 $A\mathbf{v} - \lambda\mathbf{v} = \mathbf{0}$

 $A\mathbf{v} - \lambda I_n \mathbf{v} = \mathbf{0}$

 $(A - \lambda I_n)\mathbf{v} = \mathbf{0}$

matrix

- Assume we know λ is the eigenvalue of matrix A
- Eigenvectors corresponding to λ

Eigenvectors corresponding to λ are nonzero solution of $(A - \lambda I_n)\mathbf{v} = \mathbf{0}$

Eigenvectors corresponding to λ

$$= \frac{Null(A - \lambda I_n) - \{\mathbf{0}\}}{\text{eigenspace}}$$

Eigenspace of λ : Eigenvectors corresponding to $\lambda + \{0\}$

Check whether a scalar is an eigenvalue

Check Eigenvalues

Null($A - \lambda I_n$): eigenspace of λ

• How to know whether a scalar λ is the eigenvalue of A?

Check the dimension of eigenspace of λ

If the dimension is 0

Eigenspace only contains {0}

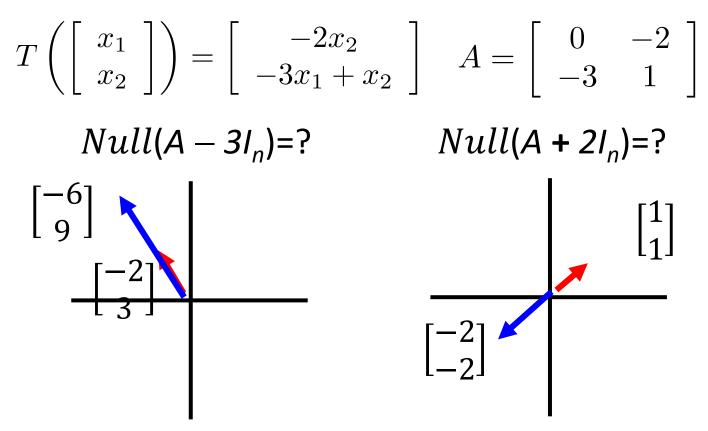
No eigenvector

 λ is not eigenvalue

Check Eigenvalues

Null($A - \lambda I_n$): eigenspace of λ

 Example: to check 3 and –2 are eigenvalues of the linear operator T



Check Eigenvalues

Null($A - \lambda I_n$): eigenspace of λ

• Example: check that 3 is an eigenvalue of *B* and find a basis for the corresponding eigenspace

 $B = \begin{vmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{vmatrix} \text{ find the solution set of } (B - 3I_3)\mathbf{x} = \mathbf{0}$ $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} x_1 \\ x_3 \\ x_3 \end{vmatrix}$ find the RREF of $B - 3I_{3}$ $= x_1 \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + x_3 \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$ $= \left| \begin{array}{ccc} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right|$

Summary

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
 - *v* is an eigenvector of A excluding zero vector
 - λ is an eigenvalue of A that corresponds to v
- Eigenvectors corresponding to λ are nonzero solution of $(A \lambda I_n)\mathbf{v} = \mathbf{0}$

EigenvectorsEigencorresponding to λ Eigen $= Null(A - \lambda I_n) - \{\mathbf{0}\}$ correspondenteigenspacecorrespondent

Eigenspace of λ :

Eigenvectors

corresponding to $\lambda + \{0\}$

Homework