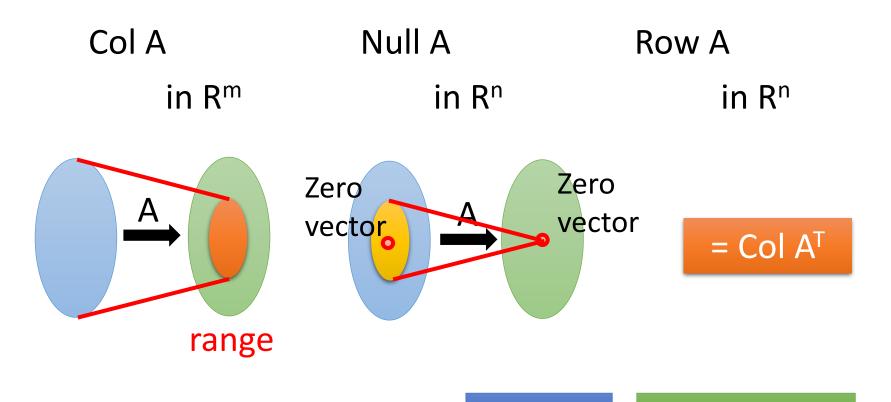
Subspaces associated with a Matrix Hung-yi Lee

Reference

• Textbook: Chapter 4.3

Three Associated Subspaces

• A is an m x n matrix



Basis?

Dimension?

Col A

• Basis: The pivot columns of A form a basis for Col A.

• Dimension:

Dim (Col A) = number of pivot columns = rank A

Rank A (revisit)

Maximum number of Independent Columns

Number of Pivot Columns

Number of Non-zero rows

Number of Basic Variables

Dim (Col A): dimension of column space

Dimension of the range of A

Example 2, P256

Null A $A = \begin{bmatrix} 3 & 1 & -2 & 1 & 5 \\ 1 & 0 & 1 & 0 & 1 \\ -5 & -2 & 5 & -5 & -3 \\ -2 & -1 & 3 & 2 & -10 \end{bmatrix} \quad R = \begin{bmatrix} 10 & 1 & 0 & 1 \\ 01 & -50 & 4 \\ 00 & 0 & 1 & -2 \\ 00 & 0 & 0 & 0 \end{bmatrix}$

- Basis:
 - Solving Ax = 0
 - Each free variable in the parametric representation of the general solution is multiplied by a vector.
 - The vectors form the basis.

$$\begin{array}{c} x_{1} + x_{3} + x_{5} = 0 \\ x_{2} - 5x_{3} + 4x_{5} = 0 \\ x_{4} - 2x_{5} = 0 \end{array} \xrightarrow{x_{2}} x_{3} = x_{3} \text{ (free)} \\ x_{4} = 2x_{5} \\ x_{5} = x_{5} \text{ (free)} \end{array} \xrightarrow{x_{1}} x_{1} \\ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{array} = x_{3} \begin{bmatrix} -1 \\ 5 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{5} \begin{bmatrix} -1 \\ -4 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

Null A

- Basis:
 - Solving Ax = 0
 - Each free variable in the parametric representation of the general solution is multiplied by a vector.
 - The vectors form the basis.
- Dimension:

Dim (Null A) = number of free variables

= Nullity A

= n - Rank A

Row A

• Basis: Nonzero rows of RREF(A)

$$A = \begin{bmatrix} 3 & 1 & -2 & 1 & 5 \\ 1 & 0 & 1 & 0 & 1 \\ -5 & -2 & 5 & -5 & -3 \\ -2 & -1 & 3 & 2 & -10 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \mathsf{REF} = \mathsf{R} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -5 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Row A = Row R

a basis of Row *R* = a basis of Row *A*

(The elementary row operations do not change the row space.)

• Dimension: Dim (Row A) = Number of Nonzero rows

= Rank A

Rank A (revisit)

Maximum number of Independent Columns

Number of Pivot Column

Number of Non-zero rows

Number of Basic Variables

Dim (Col A): dimension of column space

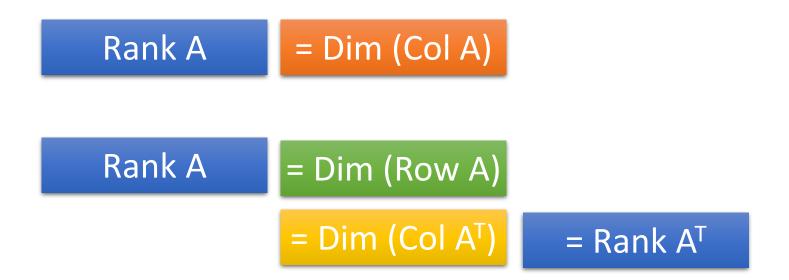
= Dim (Row A)

Dimension of the range of A

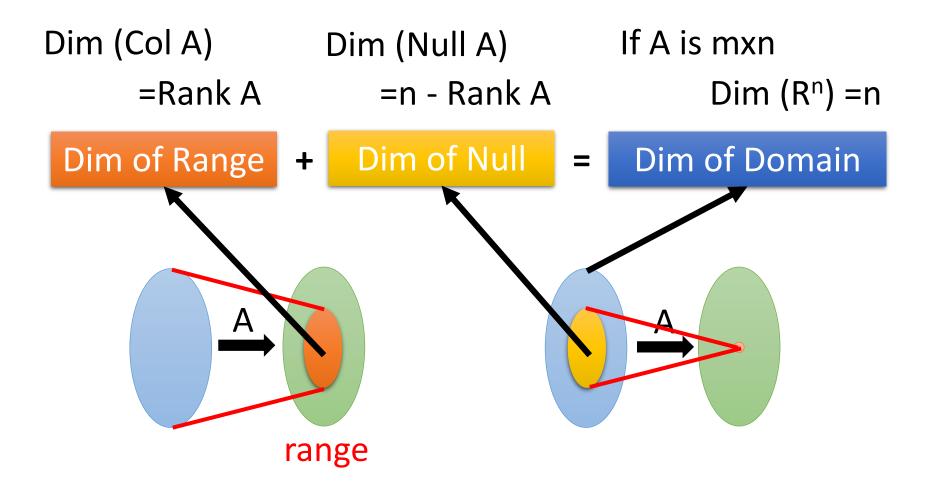
= Dim (Col A^{T})

Rank $A = Rank A^T$

• Proof



Dimension Theorem



Summary		A is an m x n matrix
	Dimension	Basis
Col A	Rank A	The pivot columns of A
Null A	Nullity A = n - Rank A	The vectors in the parametric representation of the solution of Ax=0
Row A	Rank A	The nonzero rows of the RREF of A