Orthogonality Hung-yi Lee

Outline

• Reference: Chapter 7.1

Norm & Distance

- Norm: Norm of vector v is the length of v
 - Denoted ||v||

$$||v|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

• **Distance**: The distance between two vectors u and v is defined by ||v - u|| $||v|| = \sqrt{1^2 + 2^2 + 3^2}$

$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad u = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix} \quad v - u = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix} \quad \|v - u\| = \sqrt{(-1)^2 + 5^2 + 3^2}$$

$$= \sqrt{35}$$

Orthogonal

Orthogonal

www.emmasaying.com

https://www.youtube.com/watch ?v=43BfcSkctYA https://www.youtube.com/watch ?v=EktZVposDMU

Dot Product & Orthogonal

Dot product: dot product of u and v is

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$= \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u^T v$$

• Orthogonal: u and v are orthogonal if $u \cdot v = 0$

Orthogonal is actually "perpendicular"

Zero vector is orthogonal to every vector

More about Dot Product

- Let u and v be vectors, A be a matrix, and c be a scalar
- $u \cdot u = ||u||^2$ Connect norm and dot product
- $u \cdot u = 0$ if and only if u = 0
- $u \cdot v = v \cdot u$
- $u \cdot (v + w) = u \cdot v + u \cdot w$
- $(v + w) \cdot u = v \cdot u + w \cdot u$
- $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$
- $\bullet ||cu|| = |c|||u||$
- *Au* ⋅ *v*

Example
$$||2\mathbf{u} + 3\mathbf{v}||^2 = \cdots = 4||\mathbf{u}||^2 + 12(\mathbf{v} \cdot \mathbf{u}) + 9||\mathbf{v}||^2$$
.

Example $||2\mathbf{u} + 3\mathbf{v}||^2 =$

$$= 4||\mathbf{u}||^2 + 12(\mathbf{v} \cdot \mathbf{u}) + 9||\mathbf{v}||^2.$$

Pythagorean Theorem

$$\mathbf{u}$$
 and \mathbf{v} are orthogonal $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$

Proof:
$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||^2$$

=0 if and only if u and v are orthogonal

Pythagorean Theorem

The diagonals of a parallelogram are orthogonal.

The parallelogram is a rhombus.

Proof:
$$(u+v) \cdot (u-v) = 0$$

= $||u||^2 - ||v||^2$

Triangle Inequality

For any vectors u and v,

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$$

Proof:
$$||u + v||^2 = ||u||^2 + 2u \cdot v + ||v||^2$$

 $\leq ||u||^2 + 2|u \cdot v| + ||v||^2$
Cauchy-Schwarz Inequality $\leq ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2$
 $\leq (||u|| + ||v||)^2$