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Example

A
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Matrix-vector Product 

• The size of matrix and vector should be matched.
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Properties of 
Matrix-vector Product
• A and B are mxn matrices, u and v are vectors in Rn, 

and c is a scalar.

• 𝐴 𝒖 + 𝒗 = 𝐴𝒖 + 𝐴𝒗

• 𝐴 𝑐𝒖 = 𝑐 𝐴𝒖 = 𝑐𝐴 𝒖

• 𝐴 + 𝐵 𝒖 = 𝐴𝒖 + 𝐵𝒖

• 𝐴𝟎 is the mx1 zero vector 

• 𝑶𝒗 is also the mx1 zero vector 

• 𝐼𝑛𝒗 = 𝒗



Properties of 
Matrix-vector Product
• A and B are mxn matrices. If 𝐴𝒘 = 𝐵𝒘 for all 𝑤 in 
Rn. Is it true that 𝐴 = 𝐵?

𝐴𝑒𝑗 = 𝑎𝑗 for 𝑗 = 1,2,⋯ , 𝑛, where 𝑒𝑗 is the j-th standard vector in Rn
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Concluding Remarks
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