Basis

Hung-yi Lee

Outline

- What is a basis for a subspace?
- Confirming that a set is a basis for a subspace
- Reference: Textbook 4.2

What is Basis?

Basis

Why nonzero?

- Let V be a nonzero subspace of R^{n}. A basis B for V is a linearly independent generation set of V.
$\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis for \mathscr{R}^{n}.

1. $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is independent
2. $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ generates \mathscr{R}^{n}.
$\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is a basis for \mathscr{R}^{2}
$\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\} \quad \begin{aligned} & \text {...... any two independent } \\ & \text { vectors form a basis for } \mathscr{R}^{2}\end{aligned}$

Basis

- The pivot columns of a matrix form a basis for its columns space.
$\left[\begin{array}{ccc|c|cc|c}\hline 1 & 2 & -1 & 2 & 1 & 2 \\ -1 & -2 & 1 & 2 & 3 & 6 \\ 2 & 4 & -3 & 2 & 0 & 3 \\ -3 \\ -6 & 2 & 0 & 3 & 9\end{array}\right] \stackrel{\text { RREF }}{ }\left[\begin{array}{l|l|l||c|cc}1 & 2 & 0 & 0 & -1 & -5 \\ 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
pivot columns

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right]\right\}
$$

Property

- (a) S is contained in Span S

Basis is always in

 its subspace- (b) If a finite set S^{\prime} is contained in Span S, then Span S^{\prime} is also contained in Span S
- Because Span S is a subspace

Span S

Span S'

- (c) For any vector $z, S p a n S=S p a n ~ S U\{z\}$ if and only if z belongs to the Span S

Theorem

-1. A basis is the smallest generation set.

- 2. A basis is the largest independent vector set in the subspace.
- 3. Any two bases for a subspace contain the same number of vectors.
- The number of vectors in a basis for a nonzero subspace V is called dimension of $\mathrm{V}(\operatorname{dim} \mathrm{V})$.

Theorem 3

Null B

Null C

- Any two bases of a subspace V contain the same number of vectors

Suppose $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right\}$ are two bases of V.
Let $A=\left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{k}\right]$ and $B=\left[\begin{array}{lll}\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots \\ \mathbf{w}_{p}\end{array}\right]$.
Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ spans $V, \exists \mathbf{c}_{i} \in \mathscr{R}^{k}$ s.t. $A \mathbf{c}_{i}=\mathbf{w}_{i}$ for all i
$\Rightarrow A\left[\mathbf{c}_{1} \mathbf{c}_{2} \cdots \mathbf{c}_{p}\right]=\left[\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{p}\right] \Rightarrow A C=B$
Now $C \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \in \boldsymbol{R}^{p} \Rightarrow A C \mathbf{x}=B \mathbf{x}=\mathbf{0}$
B is independent vector set $\Rightarrow \mathrm{x}=\mathbf{0} \Rightarrow \mathbf{c}_{1} \mathbf{c}_{2} \cdots \mathbf{c}_{p}$ are independent
$\mathbf{c}_{i} \in \mathfrak{R}^{k} \Rightarrow p \leq k$
Reversing the roles of the two bases one has $k \leq p \Rightarrow p=k$.

Theorem 3

Every basis of \mathfrak{R}^{n} has n vectors.

- The number of vectors in a basis for a subspace V is called the dimension of V , and is denoted $\operatorname{dim} \mathrm{V}$
- The dimension of zero subspace is 0

Example

$$
\begin{gathered}
V=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathcal{R}^{4}: \begin{array}{l}
2 x_{1} \\
x_{1}=3 x_{2}-5 x_{3}+6 x_{4}
\end{array}\right\} \begin{array}{c}
\text { Find } \operatorname{dim} \mathrm{V} \\
\operatorname{dim} \mathrm{~V}=3
\end{array} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 x_{2}-5 x_{3}+6 x_{4} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]} \\
\text { Basis? Independent vector set that } \\
\text { generates } \mathrm{V}
\end{gathered}
$$

Theorem 1

A basis is the smallest generation set.

If there is a generation set S for subspace V ,
The size of basis for V is smaller than or equal to S.

Reduction Theorem
There is a basis containing in any generation set S.

S can be reduced to a basis for V by removing some vectors.

Theorem 1 －Reduction Theorem

所有的 generation set 心中都有一個 basis

S can be reduced to a basis for V by removing some vectors．

Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is a generation set of subspace V

Subspace $V=\operatorname{Span} S \quad$ Let $A=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k}\end{array}\right]$ ．

$$
=\operatorname{Col} A
$$

The basis of Col A is the pivot columns of A Subset of S

Theorem 1 －Reduction Theorem

所有的 generation set 心中都有一個 basis

$$
\begin{aligned}
& \left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right]\right\} \\
& S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
4 \\
6
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
6 \\
3 \\
9
\end{array}\right]\right\} \quad \text { Gmallest gen }
\end{aligned}
$$

Theorem 2

A basis is the largest independent set in the subspace.

If the size of basis is k, then you cannot find more than k independent vectors in the subspace.

Extension Theorem

Given an independent vector set S in the space
S can be extended to a basis by adding more vectors

Theorem 2 －Extension Theorem

Independent set：我不是一個 basis 就是正在成為一個 basis

There is a subspace V
Given a independent vector set S（elements of S are in V ）
$\{$ If Span $S=V$ ，then S is a basis
If Span $S \neq V$ ，find v_{1} in V ，but not in Span S
$S=S U\left\{v_{1}\right\}$ is still an independent set
$\left\{\begin{array}{l}\text { If Span } S=V \text { ，then } S \text { is a basis } \\ \text { If Span } S \neq V \text { ，find } v_{2} \text { in } V \text { ，but not in Span } S\end{array}\right.$

$$
S=S \cup\left\{v_{2}\right\} \text { is still an independent set }
$$

．．．．．．You will find the basis in the end．

More from Theorems

A basis is the smallest generation set.

A vector set generates \mathfrak{R}^{m} must contain at least m vectors.
\mathfrak{R}^{m} have a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$
Because a basis is the smallest generation set
Any other generation set has at least m vectors.

A basis is the largest independent set in the subspace.

Any independent vector set in \mathfrak{R}^{m} contain at most m vectors.

Summary

雕塑 ．．．主要是使用雕（通過減除材料來造型）及塑（通過疊加材料來造型）的方式 ．．．．．．（from wiki）

Independent vector set

Confirming that a set is a Basis

Intuitive Way

- Definition: A basis B for V is an independent generation set of V.

$$
V=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in \mathcal{R}^{3}: v_{1}-v_{2}+2 v_{3}=0\right\} \quad \mathcal{C}=\left\{\begin{array}{l}
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\} \\
\text { Is } \boldsymbol{C} \text { a basis of } V ?
\end{array}\right.
$$

Independent? yes
Generation set? difficult

$$
\mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\} \text { generates } \vee
$$

Another way

Find a basis for V

- Given a subspace V, assume that we already know that dim $V=k$. Suppose S is a subset of V with k vectors

If S is independent
$\longmapsto S$ is basis
If S is a generation set $\square S$ is basis
$V=\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in \mathcal{R}^{3}: v_{1}-v_{2}+2 v_{3}=0\right\} \mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$
Dim V = 2 (parametric representation) Is \mathcal{C} a basis of V ?
\mathcal{C} is a subset of V with 2 vectors

\mathcal{E} is a basis of V Independent? yes

Another way

Assume that $\operatorname{dim} \mathrm{V}=\mathrm{k}$. Suppose S is a subset of V with k vectors

If S is independent
S is basis
By the extension theorem, we can add more vector into S to form a basis.
However, S already have k vectors, so it is already a basis.

If S is a generation set
S is basis
By the reduction theorem, we can remove some vector from S to form a basis.
However, S already have k vectors, so it is already a basis.

Example

- Is \mathfrak{B} a basis of V ?

$$
V=\left\{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] \in \mathcal{R}^{4}: v_{1}+v_{2}+v_{4}=0\right\} \in \frac{\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}}{\text { Independent set in } \mathrm{V} \text { ? yes }}
$$

$\operatorname{Dim} V=$? $3 \square \mathscr{B}$ is a basis of V.

Example

- Is \mathfrak{B} a basis of $V=\operatorname{Span} S$?
\mathscr{B} is a subset of \vee with 3 vectors

$$
\begin{aligned}
& \mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
-1 \\
-1
\end{array}\right]\right\} \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right\} \\
& A=\left[\begin{array}{lccc}
1 & -1 & 3 & 1 \\
1 & 3 & 1 & 1 \\
1 & 1 & -1 & -1 \\
2 & -1 & 1 & -1
\end{array}\right] \Longrightarrow R_{A}=\left[\begin{array}{lllc}
1 & 0 & 0 & -2 / 3 \\
0 & 1 & 0 & 1 / 3 \\
0 & 0 & 1 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] \operatorname{dim} A=3 \\
& B=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \Longrightarrow R_{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { Independent }
\end{aligned}
$$

