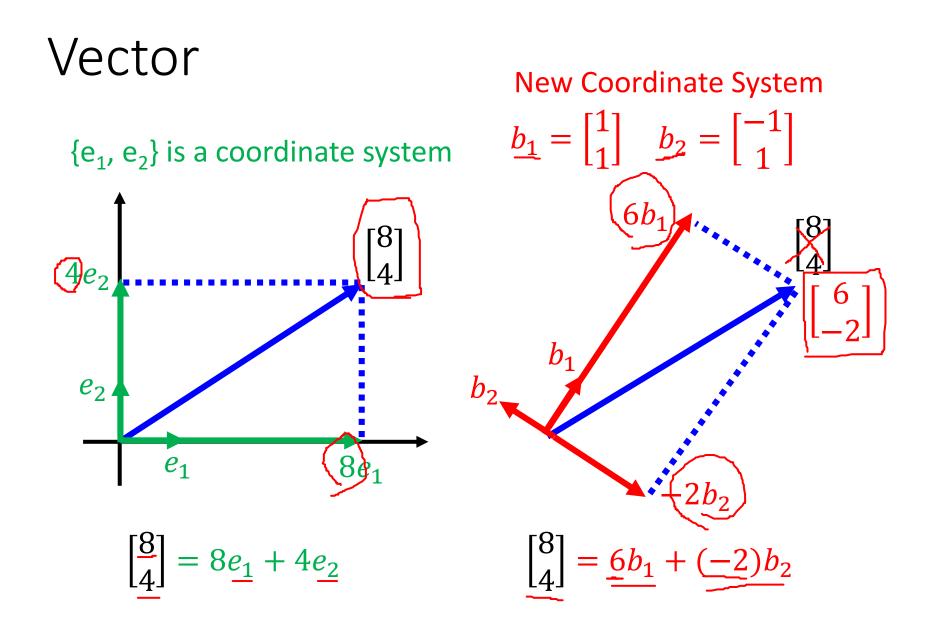
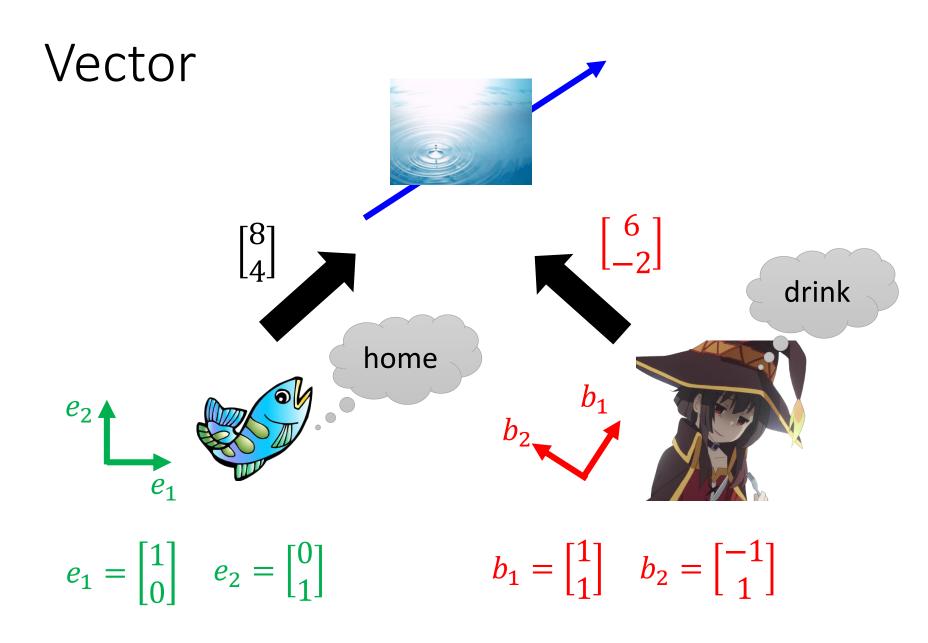
Coordinate System Hung-yi Lee

Outline

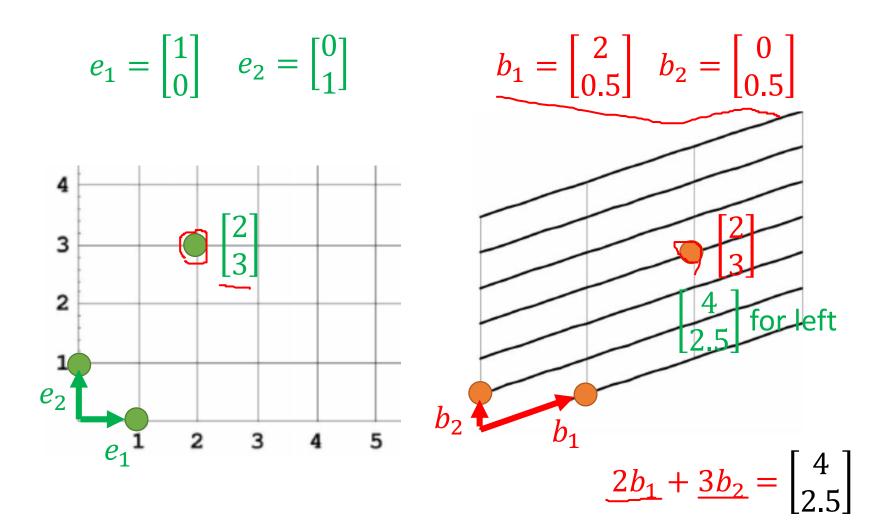
- Coordinate Systems
 - Each coordinate system is a "viewpoint" for vector representation.
 - The same vector is represented differently in different coordinate systems.
 - Different vectors can have the same representation in different coordinate systems.
- Changing Coordinates
- Reference: textbook Ch 4.4

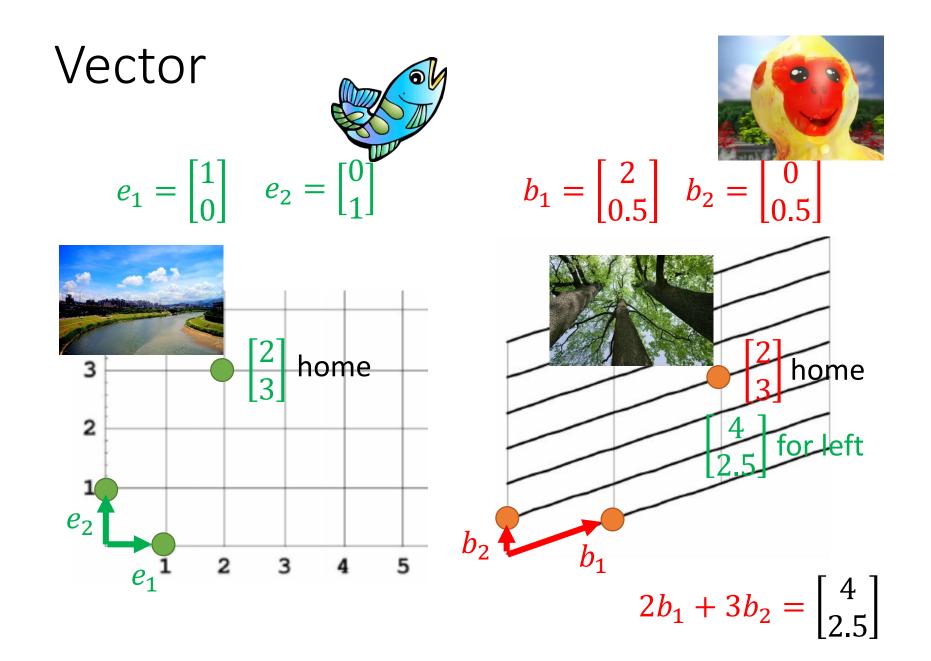
Coordinate System





Vector





Coordinate System

- A vector set \mathcal{B} can be considered as a <u>coordinate</u> system for \mathbb{R}^n if:
- 1. The vector set ${oldsymbol{\mathcal{B}}}$ spans the ${\mathsf{R}}^{\mathsf{n}}$

Every vector should have representation

• 2. The vector set ${m {\mathcal B}}$ is independent

Unique representation

${\boldsymbol{\mathscr{B}}}$ is a basis of ${\sf R}^{\sf n}$

Why Basis?

- Let vector set $\mathcal{B} = \{u_1, u_2, \dots, u_k\}$ be independent.
- Any vector v in Span \mathcal{B} can be uniquely represented as a linear combination of the vectors in \mathcal{B} .
- That is, there are unique scalars a_1, a_2, \dots, a_k such that $v = a_1u_1 + a_2u_2 + \dots + a_ku_k$
- Proof:

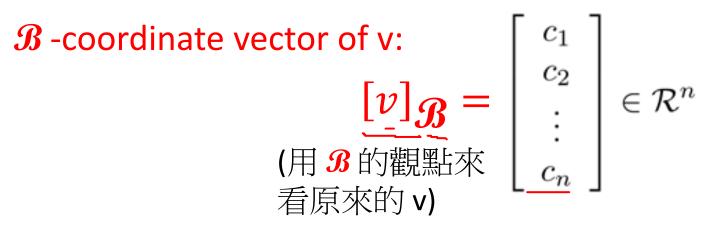
Unique? $v = \underline{a_1 u_1} + \underline{a_2 u_2} + \dots + \underline{a_k u_k}$ $v = \underline{b_1 u_1} + \underline{b_2 u_2} + \dots + \underline{b_k u_k}$ $(a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_k - b_k)u_k = 0$ *B* is independent $a_1 - b_1 = a_2 - b_2 = \dots = a_k - b_k = 0$

Coordinate System

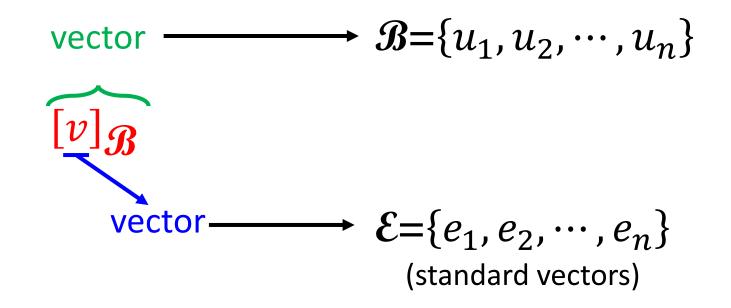
• Let vector set $\underline{\mathcal{B}} = \{u_1, u_2, \dots, u_n\}$ be a basis for a subspace \mathbb{R}^n

 \square is a coordinate system

• For any v in Rⁿ, there are unique scalars c_1, c_2, \dots, c_n such that $v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$



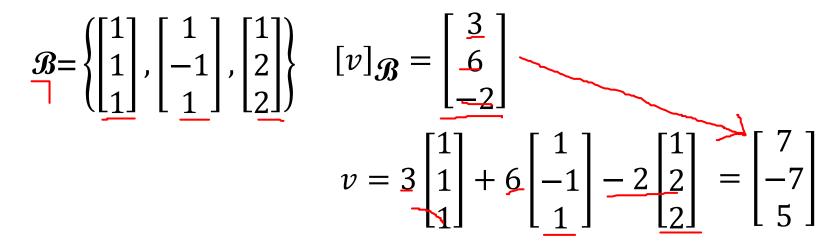
Coordinate System



E is Cartesian coordinate system (直角坐標系)

$$\underline{v} = [\underline{v}]\underline{\varepsilon}$$

Other System \rightarrow Cartesian



$$e = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\} \qquad [u]_{e} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$
$$u = 3 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + 6 \begin{bmatrix} 4\\5\\-2 \end{bmatrix} = \begin{bmatrix} 7\\8\\9 \end{bmatrix} = \begin{bmatrix} 13\\20\\27 \end{bmatrix}$$

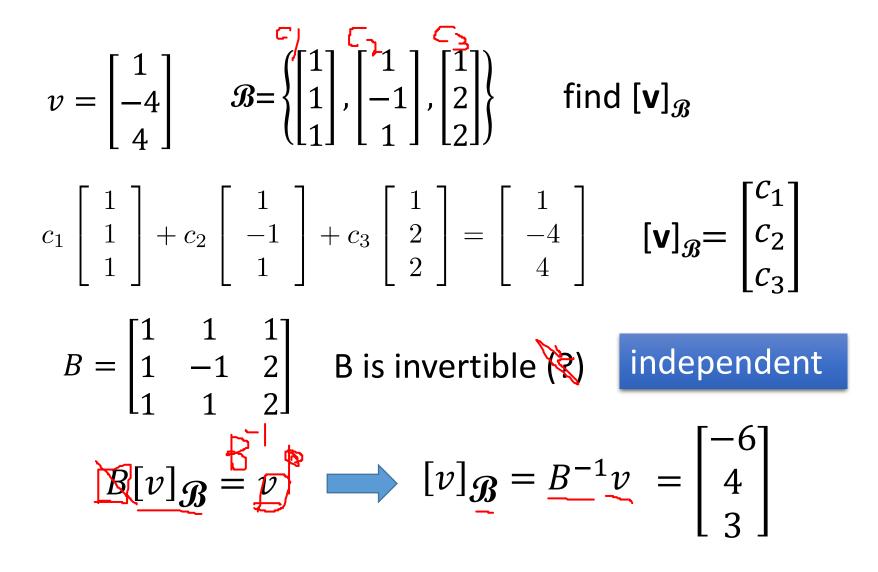
Other System \rightarrow Cartesian

- Let vector set *B*={*u*₁, *u*₂, …, *u_n*} be a basis for a subspace Rⁿ
- Matrix $\underline{\mathbf{B}} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$

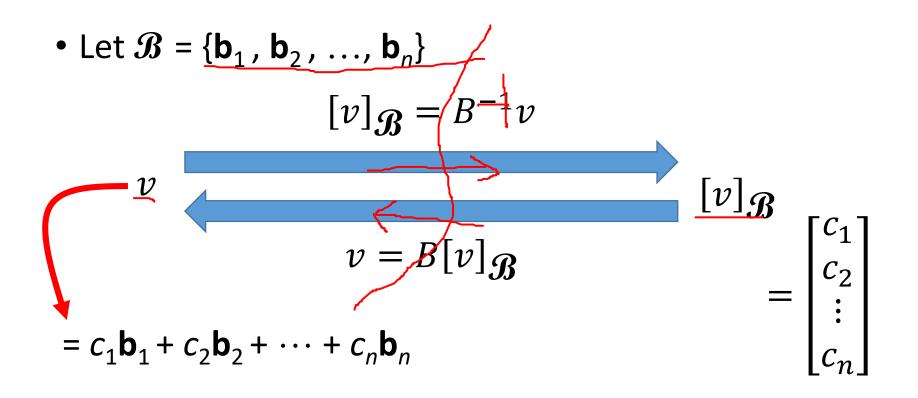
Given $v]_{\mathcal{B}}$, how to find v? $[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ $v = c_1u_1 + c_2u_2 + \dots + c_nu_n$

 $= \underline{B}[\underline{v}]_{\mathcal{B}}$ (matrix-vector product)

Cartesian \rightarrow Other System



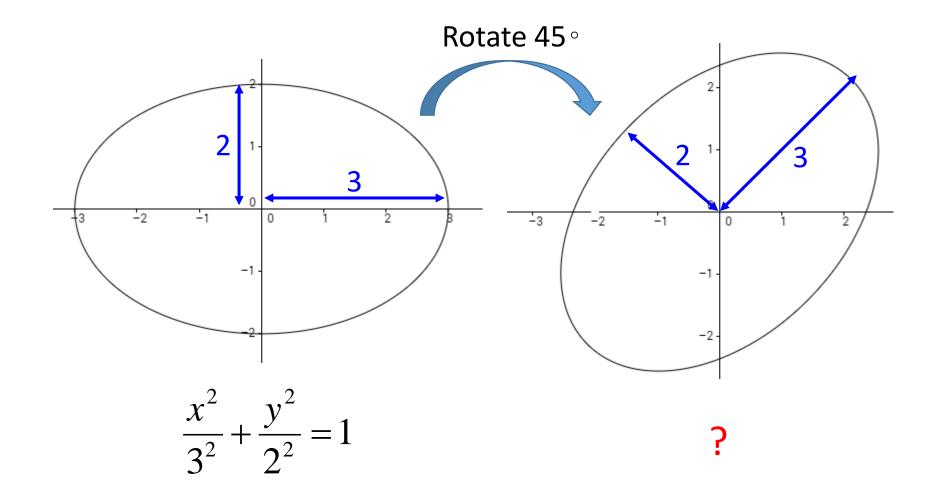
Cartesian ↔ Other System



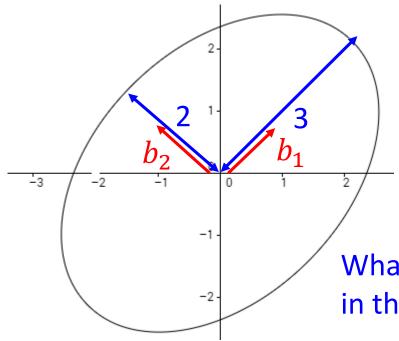
Let $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ be a basis of \mathbb{R}^n . $[\underline{b}_i]_{\mathcal{B}} = ?e_i$ \mathcal{C}_1 (Standard vector)

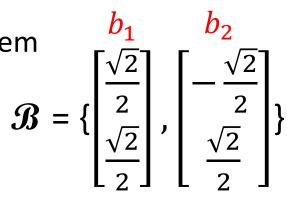
Changing Coordinates

Equation of ellipse



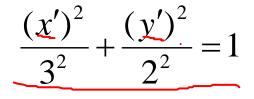
Equation of ellipse



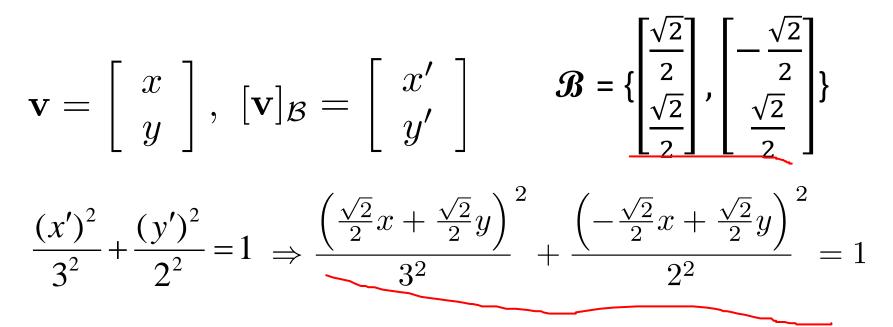


 $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} x' \\ y' \end{bmatrix}$

What is the equation of the ellipse in the new coordinate system?



Equation of ellipse



$$[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$$

 $\left[\begin{array}{c} \underline{x'}\\ \underline{y'} \end{array}\right] = B^{-1} \left[\begin{array}{c} x\\ y \end{array}\right]$

Equation of hyperbola

