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Outline

• Coordinate Systems

• Each coordinate system is a “viewpoint” for 
vector representation.
• The same vector is represented differently in 

different coordinate systems.

• Different vectors can have the same representation 
in different coordinate systems.

• Changing Coordinates

• Reference: textbook Ch 4.4



Coordinate System
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New Coordinate System

{e1, e2} is a coordinate system
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Coordinate System

• A vector set B can be considered as a coordinate 
system for Rn if:

• 1. The vector set B spans the Rn

• 2. The vector set B is independent

Every vector should have representation

Unique representation

B is a basis of Rn



Why Basis?

• Let vector set B= 𝑢1, 𝑢2, ⋯ , 𝑢𝑘 be independent. 

• Any vector v in Span B can be uniquely represented as a 
linear combination of the vectors in B.

• That is, there are unique scalars 𝑎1, 𝑎2, ⋯ , 𝑎𝑘 such that 𝑣
= 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑘𝑢𝑘

• Proof:

𝑣 = 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑘𝑢𝑘

𝑣 = 𝑏1𝑢1 + 𝑏2𝑢2 +⋯+ 𝑏𝑘𝑢𝑘

Unique?

𝑎1 − 𝑏1 𝑢1 + 𝑎2 − 𝑏2 𝑢2 +⋯+ 𝑎𝑘 − 𝑏𝑘 𝑢𝑘 = 0

B is independent a1 − b1 = a2 − b2 =  = ak− bk = 0



Coordinate System

• Let vector set B= 𝑢1, 𝑢2, ⋯ , 𝑢𝑛 be a basis for a subspace 
Rn

• For any v in Rn, there are unique scalars 𝑐1, 𝑐2, ⋯ , 𝑐𝑛 such 
that 𝑣 = 𝑐1𝑢1 + 𝑐2𝑢2 +⋯+ 𝑐𝑛𝑢𝑛

B -coordinate vector of v:

𝑣 B =

B is a coordinate system 

(用B的觀點來
看原來的 v)



Coordinate System

𝑣 B

B= 𝑢1, 𝑢2, ⋯ , 𝑢𝑛vector

vector E= 𝑒1, 𝑒2, ⋯ , 𝑒𝑛
(standard vectors)

E is Cartesian coordinate system (直角坐標系)

𝑣 = 𝑣 E



Other System → Cartesian
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Other System → Cartesian

• Let vector set B= 𝑢1, 𝑢2, ⋯ , 𝑢𝑛 be a basis for a 
subspace Rn

• Matrix B = 𝑢1 𝑢2 ⋯ 𝑢𝑛

Given 𝑣 B, how to find v? 

= 𝐵 𝑣 B

𝑣 = 𝑐1𝑢1 + 𝑐2𝑢2 +⋯+ 𝑐𝑛𝑢𝑛

𝑣 B =

𝑐1
𝑐2
⋮
𝑐𝑛

(matrix-vector product)



Cartesian → Other System
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Cartesian ↔ Other System

• Let B = {b1 , b2 , , bn}

Let B= 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 be a basis of Rn. 𝑏𝑖 B =?𝑒𝑖

(Standard vector)

𝑣 𝑣 B

𝑣 B = 𝐵−1𝑣

𝑣 = 𝐵 𝑣 B
=

𝑐1
𝑐2
⋮
𝑐𝑛

= c1b1 + c2b2 +  + cnbn



Changing Coordinates



Equation of ellipse
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Equation of ellipse
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Use another coordinate system
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What is the equation of the ellipse 
in the new coordinate system?



Equation of ellipse
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Equation of hyperbola

− 3𝑥2 + 2𝑥𝑦 + 3𝑦2 = 12
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Equation of hyperbola

− 3𝑥2 + 2𝑥𝑦 + 3𝑦2 = 12
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Equation of hyperbola

− 3𝑥2 + 2𝑥𝑦 + 3𝑦2 = 12
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Summary

𝑣 B

B= 𝑢1, 𝑢2, ⋯ , 𝑢𝑛vector

vector E= 𝑒1, 𝑒2, ⋯ , 𝑒𝑛
(standard vectors)

𝑣 𝑣 B

𝑣 B = 𝐵−1𝑣

𝑣 = 𝐵 𝑣 B


