Inverse of a Matrix Hung-yi Lee

- What is the inverse of a matrix?
- Elementary matrix
- What kinds of matrices are invertible
- Find the inverse of an invertible matrix

What is the inverse of a matrix?

Inverse of Function

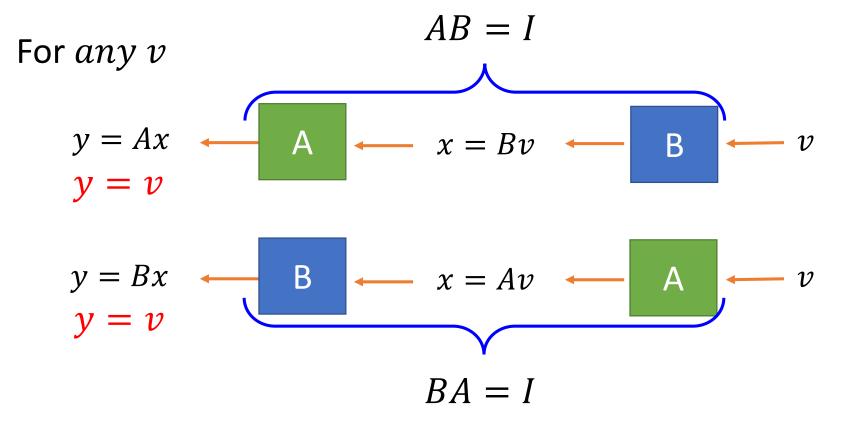
Two function <u>f</u> and <u>g</u> are <u>inverse</u> of each other (<u>f=g⁻¹</u>, <u>g=f⁻¹</u>) if

For any v

$$y = g(x) \qquad g \qquad x = f(v) \qquad f \qquad y$$

$$y = v \qquad f \qquad x = g(v) \qquad g \qquad v$$

• If *B* is an inverse of *A*, then *A* is an inverse of *B*, i.e., *A* and *B* are inverses to each other.



• If *B* is an inverse of *A*, then *A* is an inverse of *B*, i.e., *A* and *B* are inverses to each other.

A is called invertible if there is a matrix B such that AB = I and BA = I

B is an inverse of A $B = A^{-1}$ $A = B^{-1}$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \quad B = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} \qquad \qquad AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• If *B* is an inverse of *A*, then *A* is an inverse of *B*, i.e., *A* and *B* are inverses to each other.

A is called invertible if there is a matrix B such that AB = I and BA = I

B is an inverse of A $B = A^{-1}$ $A = B^{-1}$

Non-square matrix cannot be invertible

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & 1 \\ -1 & -1 \\ 0 & 2 \end{bmatrix}$$

• Not all the square matrix is invertible

$$A = \left[\begin{array}{cc} 1 & 2 \\ 0 & 0 \end{array} \right] \qquad \left[\begin{array}{cc} 1 & 2 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

• Unique

AB = I BA = I AC = I CA = I

$$B = BI = B(AC) = (BA)C = IC = C$$

Inverse for matrix product

• A and B are invertible nxn matrices, is AB invertible? yes

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$$
$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AA^{-1} = I$$

• Let A_1, A_2, \dots, A_k be nxn invertible matrices. The product $A_1A_2 \cdots A_k$ is invertible, and

$$(A_1 A_2 \cdots A_k)^{-1} = (A_k)^{-1} (A_{k-1})^{-1} \cdots (A_1)^{-1}$$

Inverse for matrix transpose

• If A is invertible, is A^T invertible?

$$(A^T)^{-1} = ? (A^{-1})^T$$

$$A^{-1}A = I \implies (A^{-1}A)^T = I \implies A^T (A^{-1})^T = I$$

 $AA^{-1} = I \implies (AA^{-1})^T = I \implies (A^{-1})^T A^T = I$

Solving Linear Equations

• The inverse can be used to solve system of linear equations.

$$A\mathbf{x} = \mathbf{b}$$

If A is invertible.

$$A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$

$$x_{1} + 2x_{2} = 4$$

$$3x_{1} + 5x_{2} = 7$$

$$Ax = b$$

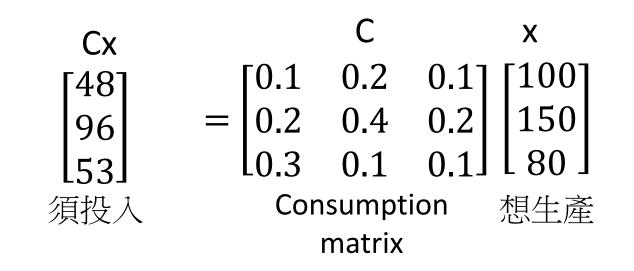
$$\mathbf{x} = A^{-1}\mathbf{b}$$

$$= \begin{bmatrix} -5 & 2\\ 3 & -1 \end{bmatrix} \begin{bmatrix} 4\\ 7 \end{bmatrix} = \begin{bmatrix} -6\\ 5 \end{bmatrix}$$

However, this method is computationally inefficient.

• 假設世界上只有食物、黃金、木材三種資源

	需要食物	需要黃金	需要木材·
生產一單位食物	0.1	0.2	0.3
生產一單位黃金	0.2	0.4	0.1
生產一單位木材	0.1	0.2	0.1
Cx	_	С	X
$\begin{bmatrix} 0.1x_1 + 0.2x_2 \\ 0.2x_1 + 0.4x_2 \\ 0.3x_1 + 0.1x_2 \end{bmatrix}$	$x_{2} + 0.1x_{3}$	0.1 0.2	$0.1] [x_1]$
$0.2x_1 + 0.4x_2$	$ _{2} + 0.2x_{3} = $	0.2 0.4	$0.2 x_2 $
$0.3x_1 + 0.1x_2$	$ _{2} + 0.1x_{3} $	0.3 0.1	0.1 [x_3]
一 須投入	-	Consumption	on 想生產
	matrix		



須考慮成本:

淨收益
$$x - Cx = \begin{bmatrix} 100\\150\\80 \end{bmatrix} - \begin{bmatrix} 48\\96\\53 \end{bmatrix} = \begin{bmatrix} 52\\54\\27 \end{bmatrix}$$
 Demand
Vector d

$$C = \begin{bmatrix} 0.1 & 0.2 & 0.1 \\ 0.2 & 0.4 & 0.2 \\ 0.3 & 0.1 & 0.1 \end{bmatrix} \qquad d = \begin{bmatrix} 90 \\ 80 \\ 60 \end{bmatrix}$$
 Demand Vector d

生產目標×應該訂為多少?

$$\begin{aligned} x - Cx &= d & A = I - C = \begin{bmatrix} 0.9 & -0.2 & -0.1 \\ -0.2 & 0.6 & -0.2 \\ -0.3 & -0.1 & 0.9 \end{bmatrix} \\ (I - C)x &= d & d = \begin{bmatrix} 90 \\ 80 \\ 80 \\ 60 \end{bmatrix} & x = \begin{bmatrix} 170 \\ 240 \\ 150 \end{bmatrix} \end{aligned}$$

• 提升一單位食物的淨產值,需要多生產多少資源? Ans: The first column of $(I - C)^{-1}$

$$(I - C)x = d$$
 $x = (I - C)^{-1}d$

$$d \longrightarrow d + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = d + e_1 \qquad \qquad x' = (I - C)^{-1}(d + e_1) \\ = (I - C)^{-1}d + (I - C)^{-1}e_1$$

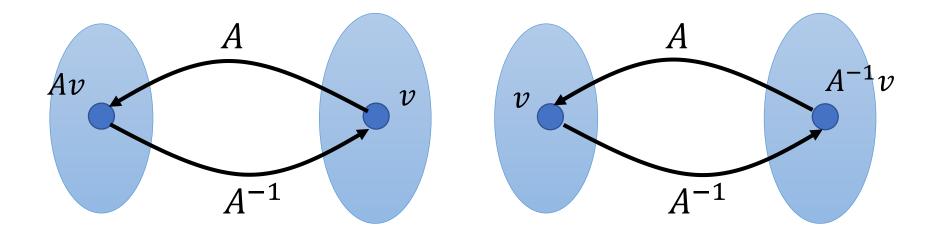
$$(I-C)^{-1} = \begin{bmatrix} 1.3 & 0.475 & 0.25 \\ 0.6 & 1.950 & 0.50 \\ 0.5 & 0.375 & 1.25 \end{bmatrix}$$

食物 黃金 木材

Invertible

Invertible

• A is called invertible if there is a matrix B such that AB = I and BA = I ($B = A^{-1}$)



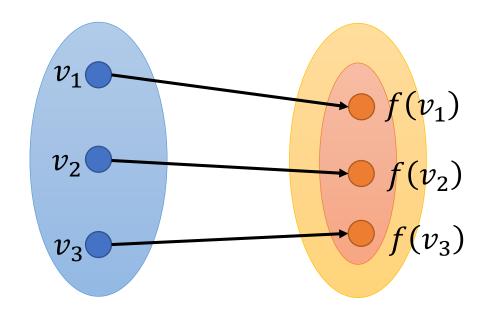
Summary

- Let A be an n x n matrix. A is invertible if and only if
 - The columns of A span Rⁿ
 - For every b in Rⁿ, the system Ax=b is consistent
 - The rank of A is n
 - The columns of A are linear independent
 - The only solution to Ax=0 is the zero vector
 - The nullity of A is zero
 - The reduced row echelon form of A is I_n
 - A is a product of elementary matrices
 - There exists an n x n matrix B such that $BA = I_n$
 - There exists an n x n matrix C such that $AC = I_n$

http://goo.gl/z3J5Rb

Review: One-to-one

A function f is one-to-one



f(x) = b has one solution f(x) = b has at most one solution If co-domain is "smaller" than the domain, f cannot be one-to-one.

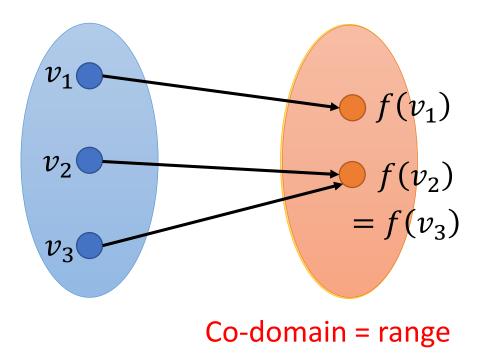
If a matrix A is 矮胖, it cannot be one-to-one.

The reverse is not true.

If a matrix A is one-toone, its columns are independent.

Review: Onto

• A function f is onto



If co-domain is "larger" than the domain, f cannot be onto.

If a matrix A is 高瘦, it cannot be onto.

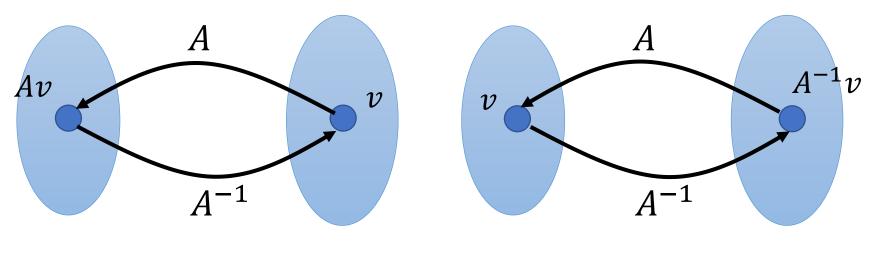
The reverse is not true.

If a matrix A is onto, rank A = no. of rows.

f(x) = b always have solution

Invertible

• A is called invertible if there is a matrix B such that AB = I and BA = I ($B = A^{-1}$)



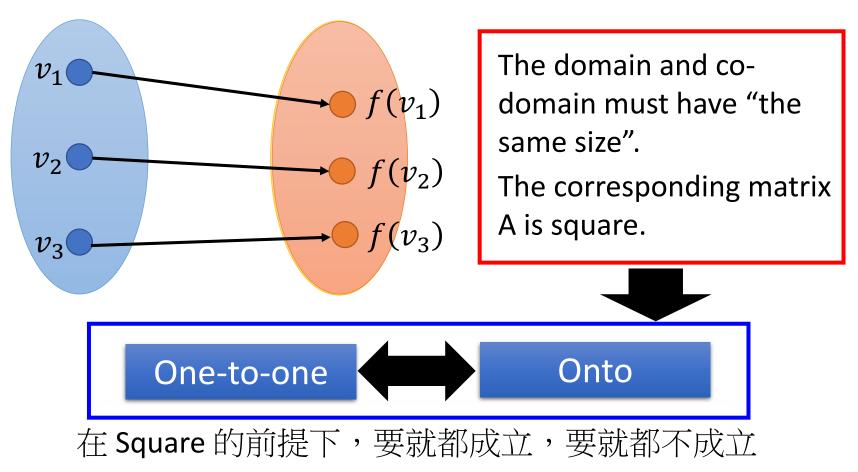
A must be one-to-one

A must be onto (不然 A⁻¹ 的 input 就會有限制)

An invertible matrix A is always square.

One-to-one and onto

A function f is one-to-one and onto



Invertible

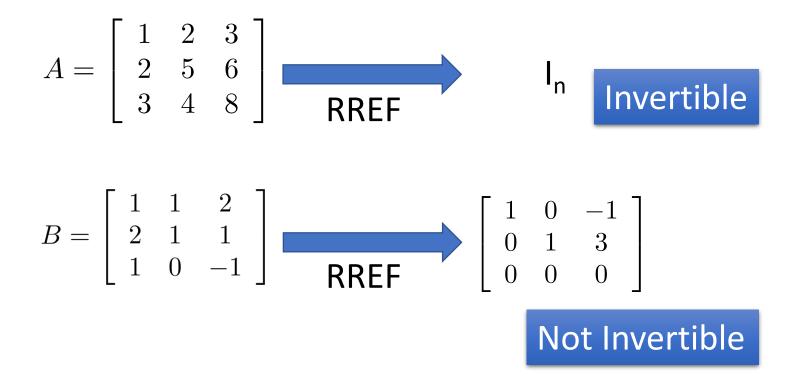
- Let A be an n x n matrix.
 - Onto \rightarrow One-to-one \rightarrow invertible
 - The columns of A span Rⁿ
 - For every b in Rⁿ, the system Ax=b is consistent

Rank A = n

- The rank of A is the number of rows
- One-to-one \rightarrow Onto \rightarrow invertible
 - The columns of A are linear independent
 - The rank of A is the number of columns
 - The nullity of A is zero
 - The only solution to Ax=0 is the zero vector
 - The reduced row echelon form of A is I_n

Invertible

- Let A be an n x n matrix. A is invertible if and only if
 - The reduced row echelon form of A is I_n



Summary

One-to-

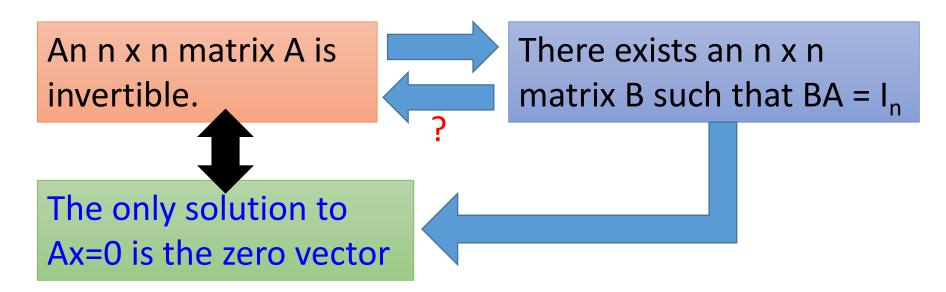
one

- Let A be an n x n matrix. A is invertible if and only if
 - The columns of A span Rⁿ
- For every b in Rⁿ, the system Ax=b is consistent
 - The rank of A is n
 - The columns of A are linear independent
 - The only solution to Ax=0 is the zero vector
 - The nullity of A is zero
 - The reduced row echelon form of A is I_n
 - A is a product of elementary matrices
 - There exists an n x n matrix B such that $BA = I_n$
 - There exists an n x n matrix C such that AC = I_n

square matrix

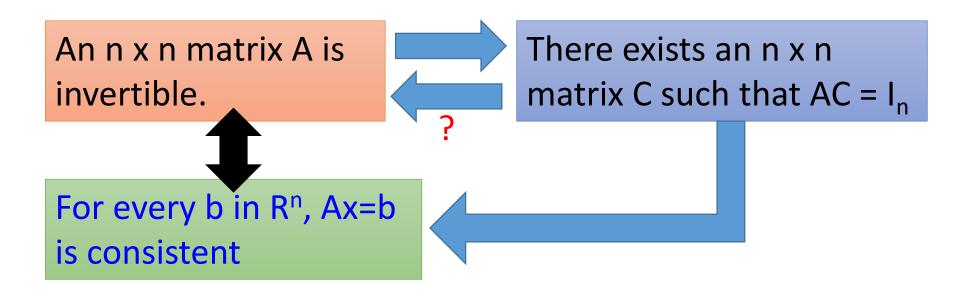
П

Invertible



If Av = 0, then $BA = I_n$ v = 0 BAv = 0 $I_n v = v$

Invertible



For any vector b,

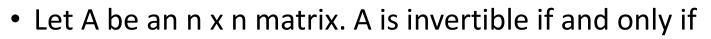
$$AC = I_n$$

$$ACb \qquad I_nb = b$$

Cb is always a solution for b

Summary

one



- The columns of A span Rⁿ
- For every b in Rⁿ, the system Ax=b is consistent
 - The rank of A is n
 - The columns of A are linear independent
- The only solution to Ax=0 is the zero vector
 - The nullity of A is zero
 - The reduced row echelon form of A is I_n
 - A is a product of elementary matrices
 - There exists an n x n matrix B such that $BA = I_n$
 - There exists an n x n matrix C such that AC = I_n

square matrix

П

Inverse of Elementary Matrices

Elementary Row Operation

- Every elementary row operation can be performed by matrix multiplication.
- 1. Interchange

elementary matrix

$$\begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$

• 2. Scaling

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{k} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ kc & kd \end{bmatrix}$$

• 3. Adding *k* times row i to row j:

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{k} & \mathbf{1} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ ka+c & kb+d \end{bmatrix}$$

Elementary Matrix

- Every elementary row operation can be performed by matrix multiplication. elementary matrix
- How to find elementary matrix?

E.g. the elementary matrix that exchanges the 1st and 2nd rows

$$E\begin{bmatrix}1 & 4\\2 & 5\\3 & 6\end{bmatrix} = \begin{bmatrix}2 & 5\\1 & 4\\3 & 6\end{bmatrix} \qquad E\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} = \begin{bmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{bmatrix}$$
$$\implies E = \begin{bmatrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{bmatrix}$$

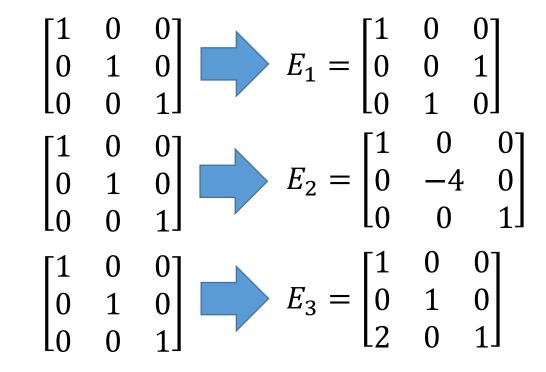
Elementary Matrix

- How to find elementary matrix?
- Apply the desired elementary row operation on Identity matrix

Exchange the 2nd and 3rd rows

Multiply the 2nd row by -4

Adding 2 times row 1 to row 3



Elementary Matrix

- How to find elementary matrix?
- Apply the desired elementary row operation on Identity matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad E_1 A = \qquad \qquad E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$E_2 A = \qquad \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$E_3 A = \qquad \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Inverse of Elementary Matrix

Reverse elementary row operation

Adding 2 times row 1 to row 3

Adding -2 times row 1 to row 3

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad \longleftarrow \qquad E_3^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

RREF v.s. Elementary Matrix

• Let A be an mxn matrix with reduced row echelon form R.

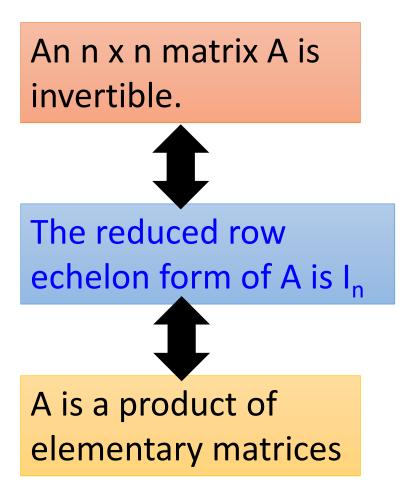
$$E_k \cdots E_2 E_1 A = R$$

 There exists an invertible m x m matrix P such that PA=R

$$P = E_k \cdots E_2 E_1$$

$$P^{-1} = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$

Invertible



$$R=RREF(A)=I_n$$

$$E_k \cdots E_2 E_1 A = I_n$$

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} I_n$$

$$= E_1^{-1} E_2^{-1} \cdots E_k^{-1}$$

Inverse of General Matrices

2 X 2 Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \qquad \text{Find } e, f, g, h$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, A is not invertible.

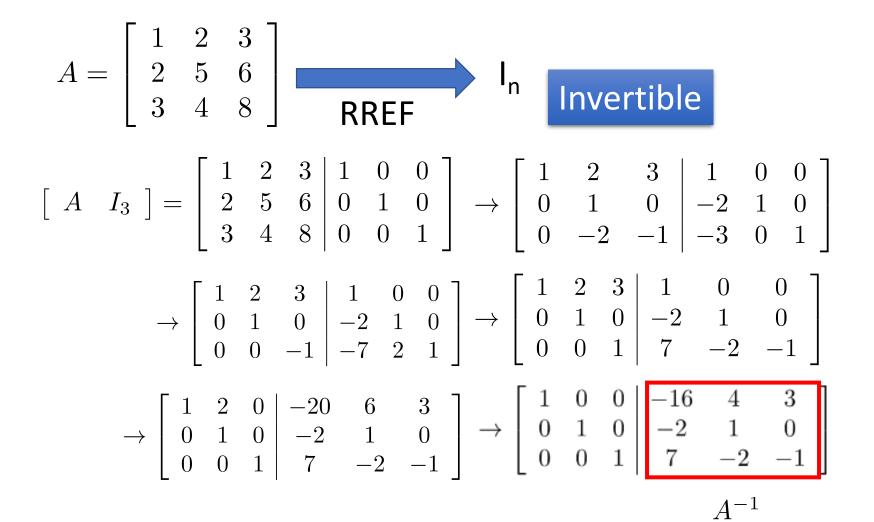
Let A be an n x n matrix. A is invertible if and only if
The reduced row echelon form of A is In

$$\frac{E_k \cdots E_2 E_1 A}{A^{-1}} = R = I_n$$

$$A^{-1} = E_k \cdots E_2 E_1$$

- Let A be an n x n matrix. Transform [A I_n] into its RREF [R B]
 - R is the RREF of A
 - B is an nxn matrix (not RREF)
- If $R = I_n$, then A is invertible
 - B = A⁻¹

$$E_k \cdots E_2 E_1 \begin{bmatrix} A & I_n \end{bmatrix}$$
$$= \begin{bmatrix} R & E_k \cdots E_2 E_1 \end{bmatrix}$$
$$I_n \qquad A^{-1}$$



- Let A be an n x n matrix. Transform [A I_n] into its RREF [R B]
 - R is the RREF of A
 - B is a nxn matrix (not RREF)
- If $R = I_n$, then A is invertible
 - B = A⁻¹
- To find A⁻¹C, transform [A C] into its RREF [R C']
 - $C' = A^{-1}C$ $A^{-1}C$

$$E_k \cdots E_2 E_1 \begin{bmatrix} A & C \end{bmatrix} = \begin{bmatrix} R & E_k \cdots E_2 E_1 C \end{bmatrix}$$
$$I_n \qquad A^{-1} \qquad P139 - 140$$