（High School）Vector李宏毅

Hung－yi Lee

Vectors

- A vector \mathbf{v} is a set of numbers

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$$
\mathbf{v}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

Row vector
Column vector

In this course, the term vector refers to a column vector unless being explicitly mentioned otherwise.

Vectors

- components: the entries of a vector.

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

- The i-th component of vector \mathbf{v} refers to v_{i}
- $\mathrm{v}_{1}=1, \mathrm{v}_{2}=2, \mathrm{v}_{3}=3$
- If a vector only has less than four components, you can visualize it.

http://mathinsight.org/vectors_carte

sian_coordinates_2d_3d\#vector3D

Scalar Multiplication

Vector Addition

Vector Set $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}6 \\ 8 \\ 9\end{array}\right],\left[\begin{array}{l}9 \\ 0 \\ 2\end{array}\right]\right\} \begin{aligned} & \text { A vector set with } \\ & 4 \text { elements }\end{aligned}$

- A vector set can contain infinite elements

Vector Set

- \mathfrak{R}^{n} :We denote the set of all vectors with n entries by \boldsymbol{R}^{n}.

Properties of Vector

The objects have the following 8 properties are "vectors".

- For any vectors \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathscr{R}^{n}, and any scalars a and b
- $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
- $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
- There is an element $\mathbf{0}$ in \mathfrak{R}^{n} such that $\mathbf{0}+\mathbf{u}=\mathbf{u}$
- There is an element \mathbf{u}^{\prime} in \mathscr{R}^{n} such that $\mathbf{u}^{\prime}+\mathbf{u}=0$
- $1 \mathbf{u}=\mathbf{u}$
- $(a b) \mathbf{u}=a(b \mathbf{u})$
- $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$
- $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$
$\mathbf{0}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ zero vector
\mathbf{u}^{\prime} is the additive inverse of \mathbf{u}

More Properties of Vector $\mathbf{0}+\mathbf{u}=\mathbf{u}$ $\mathbf{u}^{\prime}+\mathbf{u}=\mathbf{0}$

- For any vectors \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathscr{R}^{n}, and any scalar a
- If $\mathbf{u}+\mathbf{v}=\mathbf{w}+\mathbf{v}$, then $\mathbf{u}=\mathbf{w}$
- If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$
- The zero vector $\mathbf{0}$ is unique. It is the only vector in \mathscr{R}^{n} that satisfies $\mathbf{0}+\mathbf{u}=\mathbf{u}$
- Each vector in \mathscr{R}^{n} has exactly one \mathbf{u}^{\prime}
- $0 u=0$
- $\mathrm{a0}=0$
- $\mathbf{u}^{\prime}=-1(\mathbf{u})=-\mathbf{u}$
- $(-a) \mathbf{u}=a(-\mathbf{u})=-(a \mathbf{u})$

