(High School) Vector

Hung-yi Lee

Vectors

• A vector **v** is a set of numbers

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Row vector
Column vector

In this course, the term **vector** refers to a **column vector** unless being explicitly mentioned otherwise.

Vectors

- components: the entries of a vector.
 - The i-th component of vector **v** refers to v_i
 - v₁=1, v₂=2, v₃=3
- If a vector only has less than four components, you can visualize it.

Scalar Multiplication

Vector Set

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 8 \\ 9 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \\ 2 \end{bmatrix} \right\}$$

A vector set with 4 elements

• A vector set can contain infinite elements

Vector Set

• \mathbb{R}^n : We denote the set of all vectors with n entries by \mathbb{R}^n .

Properties of Vector

The objects have the following 8 properties are "vectors".

- For any vectors u, v and w in Rⁿ, and any scalars a and b
 - **u** + **v** = **v** + **u**
 - (u + v) + w = u + (v + w)
 - There is an element $\mathbf{0}$ in \mathcal{R}^n such that $\mathbf{0} + \mathbf{u} = \mathbf{u}$
 - There is an element \mathbf{u}' in \mathcal{R}^n such that $\mathbf{u}' + \mathbf{u} = 0$
 - 1**u** = **u**
 - (ab)**u** = a(b**u**)
 - a(**u**+**v**) = a**u** + a**v**
 - (a+b)**u** = a**u** + b**u**

$$\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \text{ zero vector}$$

u' is the additive inverse of **u**

More Properties of Vector $\mathbf{0} + \mathbf{u} = \mathbf{u}$ $\mathbf{u}' + \mathbf{u} = \mathbf{0}$

- For any vectors **u**, **v** and **w** in \mathcal{R}^n , and any scalar a
 - If **u** + **v** = **w** + **v**, then **u** = **w**
 - If **u** + **v** = **u** + **w**, then **v** = **w**
 - The zero vector **0** is unique. It is the only vector in *Rⁿ* that satisfies **0** + **u** = **u**
 - Each vector in \mathscr{R}^n has exactly one \mathbf{u}'
 - 0**u** = **0**
 - a**0** = 0
 - u' = -1(u) = -u
 - (-a)**u** = a(-**u**) = -(a**u**)