$5-2$
74. If $f(t)$ is the characteristic polynomial of a square matrix A, what is $f(0)$?

$$
\begin{aligned}
& f(A)=\operatorname{det}(A-A I) \\
& f(D)=\operatorname{det}(A-0 I)=\operatorname{det} A
\end{aligned}
$$

75. Suppose that the characteristic polynomial of an $n \times n$ matrix A is

$$
f(A)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} \quad \operatorname{de} A A=a_{0}
$$

Determine the characteristic polynomial of $-A$.

$$
\begin{aligned}
f(A)= & \operatorname{deA}(A-(t) I) \\
f(A)= & \operatorname{deA}(-A-t I)=(-1)^{n} \operatorname{cef}(A+t I) \\
= & (-1)^{n} \frac{\operatorname{deA}(A-(-A) I)=(-1)^{n} f(-A)}{f(-A)=}(-1)^{n} a_{n}(-1)^{n} \\
& +(-1)^{n} a_{n-1}(-A)^{n-1}
\end{aligned}
$$

76. What is the coefficient on the characteristic polynomial of an $n \times n$ matrix?

77. Suppose that A is a 4×4 matrix with no nonreal eigenvalues and exactly real eigenvalues, 5 and -9 Let W_{1} and W_{2} be the eigenspaces corresponding to 5 and -9 , respectively. Write all the possible characteristic polynomials of A that are consistent with the following information:
(b) $\operatorname{dim}_{2}=1$
78. Suppose that A is a 5×5 matrix with no nonreal eigenvalues and exactly three real eigenvalues, 4,6 , and 7 . Let W_{1}, W_{2}, and W_{3} be the eigenspaces corresponding to 4,6 , and 7 , respectively. Write all the possible characteristic polynomials of A that are consistent with the following information:
(d) $\operatorname{dim} W_{2}=2$ and $\operatorname{dim} W_{3}=2$

$$
\begin{array}{lll}
m_{1} \geq 1 & m_{2} \geq 2 & m_{3} \geq 2 \\
m_{1}=1 & m_{2}=2 & m_{3}=2
\end{array}
$$

A. $n \times n$

$$
(-1)^{n} \quad \lambda_{1} \quad \lambda_{2} \quad \lambda_{3} \quad \text { no nareul }
$$

81. (a) Determine a basis for each eigenspace of $\quad A=\left[\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right]$
(b) Determine a basis for each eigenspace of $-3 A$
(c) Determine a basis for each eigenspace of 5 A
81. (d) Establish a relationship between the eigenvectors of any square matrix B and those of $c B$ for any scalar $c \neq 0$.
(e) Establish a relationship between the eigenvalues of any square matrix B and those of $c B$ for any scalar $c \neq 0$.
83. (a) Determine the characteristic polynomial of A^{T}, where $A=\left[\begin{array}{cc}5 & -2 \\ 1 & 8\end{array}\right]$
(b) Establish a relationship between the characteristic polynomial of any square matrix B and that of B^{T}.
(c) What does (b) imply about the relationship between the eigenvalues of a square matrix B and those of B^{T} ?
(d) Is there a relationship between the eigenvectors of a square matrix B and those of B^{T} ?
84. Let A and B be $n \times n$ matrices such that $B=P^{-1} A P$, and let λ be an eigenvalue of A (and hence of B). Prove the following results.

$$
I=P^{-1} P
$$

84. Let A and B be $n \times n$ matrices such that $B=P^{-1} A P$, and let λ be an eigenvalue of A (and hence of B). Prove the following results.
(a) A vector \boldsymbol{v} in R^{n} is in the eigenspace of A corresponding to λ if and only if $P^{-1} \boldsymbol{v}$ is in the eigenspace of B corresponding to λ.
85. Let A and B be $n \times n$ matrices such that $B=P^{-1} A P$, and let λ be an eigenvalue of A (and hence of B). Prove the following results.
(b) If $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a basis for the eigenspace of A corresponding to λ, then $\left\{P^{-1} \boldsymbol{v}_{1}, P^{-1} \boldsymbol{v}_{2}, \ldots, P^{-1} \boldsymbol{v}_{k}\right\}$ is a basis for the eigenspace of B corresponding to λ.

$\operatorname{Null}(A-\lambda I) \quad \operatorname{Null}(B-\lambda I)$
86. Let A and B be $n \times n$ matrices such that $B=P^{-1} A P$, and let λ be an eigenvalue of A (and hence of B). Prove the following results.
(a) A vector \boldsymbol{v} in R^{n} is in the eigenspace of A corresponding to λ if and only if $P^{-1} \boldsymbol{v}$ is in the eigenspace of B corresponding to λ.
(b) If $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a basis for the eigenspace of A corresponding to λ, then $\left\{P^{-1} \boldsymbol{v}_{1}, P^{-1} \boldsymbol{v}_{2}, \ldots, P^{-1} \boldsymbol{v}_{k}\right\}$ is a basis for the eigenspace of B corresponding to λ.
(c) The eigenspaces of A and B that correspond to the same eigenvalue have the same dimension.
