5-2

74. If f(t) is the characteristic polynomial of a square matrix A, what is f(0)?

f(A) = deA(A - AI)f(o) = deA(A - oI) = deAA

75. Suppose that the characteristic polynomial of an $n \times n$ matrix A is

$$= (a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0)$$

Determine the characteristic polynomial of -A.

$$f(A) = deA(A - (E)) + (A)$$

$$f(A) = deA(-A - t]) = (-1)^{n} cleA(A + t])$$

$$= (-1)^{n} deA(A - (-A)) = (-1)^{n} f(-A)$$

$$f(-A) = (-1)^{n} a_{n}(-A)^{n}$$

$$+ (-1)^{n} a_{n}(-A)^{n}$$

$$+ (-1)^{n} a_{n}(-A) + (-1)^{n} a_{n}(-$$

77. Suppose that A is a 4×4 matrix with no nonreal eigenvalues and exactly three real eigenvalues, 5 and -9 Let W_1 and W_2 be the eigenspaces corresponding to 5 and -9, respectively. Write all the possible characteristic polynomials of A that are consistent with the following information:

(b) $dimW_2 = 1$ $\lambda_1 = 5$ $\lambda_2 = -9$ $chmW_2 = 2$ $climW_2 = 3$ $(A - 5)^{m}$ $(A + 9)^{m/2}$ $\sum_{i=1}^{n} (A - S) (A + 9)^{3} = A^{4} + - - \sum_{i=1}^{n} (A - S)^{2} (A + 9)^{2} = A^{4} + - - M_2 \geq \phi \notin \mathbb{S}^3$ $M_1 \ge 1$ $C(A-5)(A+7) = A^{4} + - - -$

78. Suppose that A is a 5×5 matrix with no nonreal eigenvalues and exactly three real eigenvalues, 4, 6, and 7. Let W_1 , W_2 , and W_3 be the eigenspaces corresponding to 4, 6, and 7, respectively. Write all the possible characteristic polynomials of A that are consistent with the following information: $M + M_2 + M_3 = 2$

Arnxn λ_1 λ_2 λ_3 ho moreal $C(A-\lambda_1)^{m_1}(A-\lambda_2)^{m_2}(A-\lambda_3)$

81. (a) Determine a basis for each eigenspace of $A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$

(b) Determine a basis for each eigenspace of -3A

(c) Determine a basis for each eigenspace of 5A

81. (d) Establish a relationship between the eigenvectors of any square matrix B and those of cB for any scalar $c \neq 0$.

(e) Establish a relationship between the eigenvalues of any square matrix B and those of cB for any scalar $c \neq 0$.

83. (a) Determine the characteristic polynomial of A^T , where $A = \begin{bmatrix} 5 & -2 \\ 1 & 8 \end{bmatrix}$

(b) Establish a relationship between the characteristic polynomial of any square matrix B and that of B^T .

(c) What does (b) imply about the relationship between the eigenvalues of a square matrix B and those of B^T ?

(d) Is there a relationship between the eigenvectors of a square matrix B and those of B^T ?

 $I = P^{-1}P$

(a) A vector \boldsymbol{v} in \mathbb{R}^n is in the eigenspace of A corresponding to λ if and only if $P^{-1}\boldsymbol{v}$ is in the eigenspace of B corresponding to λ .

(b) If $\{v_1, v_2, ..., v_k\}$ is a basis for the eigenspace of A corresponding to λ , then $\{P^{-1}v_1, P^{-1}v_2, ..., P^{-1}v_k\}$ is a basis for the eigenspace of B corresponding to λ .

(a) A vector \boldsymbol{v} in \mathbb{R}^n is in the eigenspace of A corresponding to λ if and only if $P^{-1}\boldsymbol{v}$ is in the eigenspace of B corresponding to λ .

(b) If $\{v_1, v_2, ..., v_k\}$ is a basis for the eigenspace of A corresponding to λ , then $\{P^{-1}v_1, P^{-1}v_2, ..., P^{-1}v_k\}$ is a basis for the eigenspace of B corresponding to λ .

(c) The eigenspaces of A and B that correspond to the same eigenvalue have the same dimension.