5-3
85. Suppose that A and B are similar matrices such that $B = P^{-1}AP$ for some invertible matrix P.

(a) Show that A is diagonalizable if and only if B is diagonalizable.
85. Suppose that A and B are similar matrices such that $B = P^{-1}AP$ for some invertible matrix P.

(b) How are the eigenvalues of A related to the eigenvalues of B?

(c) How are the eigenvectors of A related to the eigenvectors of B?
86. A matrix B is called a cube root of a matrix A if $B^3 = A$. Prove that every diagonalizable matrix has a cube root.
88. Let A be a diagonalizable $n \times n$ matrix. Prove that if the characteristic polynomial of A is $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$, then $f(A) = O$, where $f(A) = a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 I_n$. This result is called the Cayley-Hamilton theorem.

Hint: If $A = PDP^{-1}$, show that $f(A) = Pf(D)P^{-1}$
88. Let A be a diagonalizable $n \times n$ matrix. Prove that if the characteristic polynomial of A is $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$, then $f(A) = O$, where $f(A) = a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 I_n$. This result is called the Cayley-Hamilton theorem.

Hint: If $A = PDP^{-1}$, show that $f(A) = Pf(D)P^{-1}$
89. The trace of a square matrix is the sum of its diagonal entries.

(a) Prove that if A is a diagonalizable matrix, then the trace of A equals the sum of the eigenvalues of A.

Hint: For all $n \times n$ matrices A and B, show that the trace of AB equals the trace of BA.
89. The trace of a square matrix is the sum of its diagonal entries.

(b) Let A be a diagonalizable $n \times n$ matrix with characteristic polynomial $(-1)^n(t - \lambda_1)(t - \lambda_2) \ldots (t - \lambda_n)$. Prove that the coefficient of t^{n-1} in this polynomial is $(-1)^{n-1}$ times the trace of A.
89. The trace of a square matrix is the sum of its diagonal entries.

(c) For A as in (b), what is the constant term of the characteristic polynomial of A?

\[\det D = \det A \]
55. Let A be a 5×5 matrix with exactly the eigenvalues 4, 5, and 8, and corresponding eigenspaces W_1, W_2 and W_3. For each of the given parts, either write the characteristic polynomial of A, or state why there is insufficient information to determine the characteristic polynomial.

(a) $\dim W_1 = 2$ and $\dim W_3 = 2$

(b) A is diagonalizable and $\dim W_2 = 2$

(c) A is diagonalizable, $\dim W_1 = 2$ and $\dim W_3 = 2$