5-3
85. Suppose that A and B are similar matrices such that $B=P^{-1} A P$ for some invertible matrix P.
(a) Show that A is diagonalizable if and only if B is diagonalizable.
85. Suppose that A and B are similar matrices such that $B=P^{-1} A P$ for some invertible matrix P.
(b) How are the eigenvalues of A related to the eigenvalues of B ?
(c) How are the eigenvectors of A related to the eigenvectors of B ?
86. A matrix B is called a cube root of a matrix A if $B^{3}=A$. Prove that every diagonalizable matrix has a cube root.
88. Let A be a diagonalizable $n \times n$ matrix. Prove that if the characteristic polynomial of A is $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, then $f(A)=O$, where $f(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}$. This result is called the Cayley-Hamilton theorem.

Hint: If $A=P D P^{-1}$, show that $f(A)=P f(D) P^{-1}$
88. Let A be a diagonalizable $n \times n$ matrix. Prove that if the characteristic polynomial of A is $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, then $f(A)=O$, where $f(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}$. This result is called the Cayley-Hamilton theorem.

Hint: If $A=P D P^{-1}$, show that $f(A)=P f(D) P^{-1}$
89. The trace of a square matrix is the sum of its diagonal entries.
(a) Prove that if A is a diagonalizable matrix, then the trace of A equals the sum of the eigenvalues of A.

Hint: For all $n \times n$ matrices A and B, show that the trace of $A B$ equals the trace of $B A$.
89. The trace of a square matrix is the sum of its diagonal entries.
(b) Let A be a diagonalizable $n \times n$ matrix with characteristic polynomial $(-1)^{n}\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \ldots\left(t-\lambda_{n}\right)$. Prove that the coefficient of t^{n-1} in this polynomial is $(-1)^{n-1}$ times the trace of A.
89. The trace of a square matrix is the sum of its diagonal entries.
(c) For A as in (b), what is the constant term of the characteristic polynomial of A ?
55. Let A be a 5×5 matrix with exactly the eigenvalues 4,5 , and 8 , and corresponding eigenspaces W_{1}, W_{2} and W_{3}. For each of the given parts, either write the characteristic polynomial of A, or state why there is insufficient information to determine the characteristic polynomial.
(a) $\operatorname{dim} W_{1}=2$ and $\operatorname{dim} W_{3}=2$
(b) A is diagonalizable and $\operatorname{dim} W_{2}=2$
(c) A is diagonalizable, $\operatorname{dim} W_{1}=2$ and $\operatorname{dim} W_{3}=2$

