## 7.3

$S \pm$ is the set of vectors that are orthogonal to every vector in $S$

$$
S^{\mathbb{L}}=\{v: v \cdot \underline{u}=0, \forall u \in S\}
$$



For any subspace $W$ of $\left(\mathbb{R}^{n}\right) \operatorname{dimW}+\operatorname{dim} W^{\perp}=()$ $\underbrace{\text { Basis: }\left\{w_{1}, w_{2}, \cdots, w_{k}\right\} \quad \text { Basis: }\left\{z_{1}, z_{2}, \cdots, z_{n-k}\right\}}_{\text {Basis for } R^{n}}$
For every vector u,

58. Let $W$ be a subspace of $R^{n}$, and let $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ be bases for $W$ and $W^{\perp}$, respectively.
(a) $B_{1} \cup B_{2}$ is a basis for $R^{n}$
(b) $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$

4-2. 77 Let $V$ and $W$ be nonzero subspaces of $R^{n}$ such that each vector $\boldsymbol{u}$ in $R^{n}$ can be uniquely expressed in the form $\boldsymbol{u}=\boldsymbol{v}+\widetilde{W}$ for some $\boldsymbol{v}$ in $V$ and some $\boldsymbol{w}$ in $W$. $\quad V=W^{\perp}$
(a) Prove that $\mathbf{0}$ is the only vector in both $\forall$ and $W$.

## W-

(b) Prove that $\operatorname{dim} V+\operatorname{dim} W=n$
61. Prove the following statements for any matrix $A$ :
(a) $(\text { Row A) })^{\perp}=$ Null A
(b) $(\operatorname{Col} A)^{\perp}=$ Null $A^{T}$

65. Let $A$ be an $n \times n$ matrix. Prove that if $\boldsymbol{v}$ is a vector in both RowA and NullA, then $\boldsymbol{v}=0$.

57. Let $S$ be a nonempty finite subset of $R^{n}$, and suppose that $W=\operatorname{Span} S$. Prove that $W^{\perp}=S^{\perp}$.
$v \in W^{\perp} S C W$
$\Rightarrow$ for all $x \in W, X \cdot V=0$
$\Rightarrow$ forall $x \in S, x \cdot v=0$

$$
\begin{aligned}
& u \in S^{2} \rightarrow\left\{x_{1}, x_{2} \cdots x_{k}\right\} \\
& \Rightarrow \text { for all } x \in S, \quad x \cdot u=0 \\
& w=c_{1} x_{1}+c_{2} x_{2}+\cdots c_{k} x_{k} \\
& \begin{array}{c}
w-u=c_{1}\left(x_{1} \cdot u\right)+\cdots+c_{k}\left(x_{k}-u\right) \\
=0
\end{array} \\
& \Rightarrow \text { for all } w \in W, w, u=0 \\
& \Rightarrow u \in W^{\perp}
\end{aligned}
$$

60. Prove that for any subspace $W$ of $R^{n},\left(W^{\perp}\right)^{\perp}=W$
61. Prove that for any nonempty finite subset $S$ of $R^{n},\left(S^{\perp}\right)^{\perp}=\operatorname{Span} S$

62. Let $S$ be a nonempty finite subset of $R^{n}$, and suppose that $W=\operatorname{Span} S$. Prove that $W^{\perp}=S^{\perp}$.
63. Use the fact the $(\text { Row } A)^{\perp}=\operatorname{Null} A$ for any matrix $A$ to give another proof that $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$ for any subspace $W$ of $R^{n}$.

Hint: Let $\underline{A}$ be a $k \times n$ matrix whose rows constitute a basis for $W$.

$$
\begin{aligned}
& \operatorname{dim} W+\operatorname{cism} W^{\perp} \\
= & \operatorname{dim}(\operatorname{Row} A)+\operatorname{dim}(\text { Row A }) \\
= & \underbrace{\operatorname{rank} A}_{=\operatorname{dim}(\operatorname{Row} A)}+\frac{\operatorname{dim}(\operatorname{Nall} A)}{=n-\operatorname{rank} A} \\
= & n
\end{aligned}
$$

orthogonal, ind.
59. Suppose that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is an orthogonal basis for $R^{n}$. For any $k$, where $1 \leq k<n$, define $W=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$. Prove that $\left\{\boldsymbol{v}_{k+1}, \boldsymbol{v}_{k+2}, \ldots, \boldsymbol{v}_{n}\right\}$ is an orthogonal basis for $W^{\perp}$.
$=\bigcup$

$$
\frac{\operatorname{dim} w}{k}+\frac{\operatorname{dim}^{2} W^{2}}{n-k}=n
$$

(D) $\cup C W^{\perp}$
$\left\{\begin{array}{l}(1) U \text { is ind } V \\ \text { (2) no. ot } U(n-k)\end{array}\right.$
if $v \in \circlearrowleft$ $=d^{d} \operatorname{mo} W^{1}(n-k)$

$$
V: w_{=0} \text { all } w \in W
$$

$W=c_{1} V_{1}+c_{2} V_{2}+\cdots c_{k} V_{k}$
67. Let $W$ be a subspace of $R^{n}$.
(a) Prove that $\left(P_{W}\right)^{2}=P_{W}$

$$
b_{4}-c\left(C^{T}\right)^{-T} C^{T}
$$

(b) Prove that $\left(P_{W}\right)^{T}=P_{W}$
$\left(P_{w}\right)^{2}=C \cdot W$ 's basis

67. Let $W$ be a subspace of $R^{n}$.
(a) Prove that $\left(P_{W}\right)^{2}=P_{W}$
(b) Prove that $\left(P_{W}\right)^{T}=P_{W}$

$$
P_{w}=C\left(C^{\top} C\right)^{-1} C^{\top}
$$

$$
\begin{aligned}
\left(P_{w}\right)^{\top} & =\left(c\left(c^{\top} c\right)^{-1} c^{\top}\right)^{\top} \quad\left(c^{\top} c\right)^{\top} \\
& =\left(c^{*}\right)^{\top}\left(\left(c^{\top} c A\right)^{\top} C^{\top}=c^{\top}\left(c^{\top}\right)^{\top}\right. \\
& =c\left(\left(c^{\top} c c^{\top}\right)^{-1} c^{\top}=c^{\top} c\right. \\
& =c\left(c^{-c}\right)^{-1} c^{\top}=P_{w}
\end{aligned}
$$

72. Let $W$ be a subspace of $R^{n}$. Prove that $P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0$

$$
\begin{aligned}
& P_{w}=C\left(C^{\top} C\right)^{-1} C^{\top} \quad C \cdot w^{\top} \text { basis } \\
& P_{w^{2}}=B\left(B^{\top} B\right)^{-1} B^{\top} \quad B=w^{1 / s} \text { basis } \\
& P_{w} P_{w}=0 \\
& =B\left(B^{\top} B\right)^{-1} B^{\top} C\left(C^{\top} C\right)^{-1} C^{\top}=0
\end{aligned}
$$

$$
w \cdot s \text { bars is } \equiv][1111 n] \rightarrow \text { whats }
$$

72. Let $W$ be a subspace of $R^{n}$. Prove that $P_{W} P_{W}=P_{W^{\perp}} P_{W}=0$

73. Let $W$ be a subspace of $R^{n}$. Prove that $P_{W}+P_{W^{\perp}}=I_{n}$.

$$
u=w+z
$$

$w \in W, z \in W^{\perp}$

$$
\left(R_{w}^{I}+R_{w}\right)(u) \quad u \in R^{n}
$$

$$
\begin{aligned}
P_{w} & +R_{r}{ }^{\perp} \\
= & C\left(C^{\top} C\right)^{-C T} C^{\top} \\
& +B\left(B^{\top} B\right)^{-1} B^{\top} \\
= & I
\end{aligned}
$$

$$
=(P w+P w)(w+z)
$$

$$
\begin{aligned}
& =P_{w w}+P_{w z}+P_{w w}+P_{w} z \\
& =w=0=0=z \\
& =w+z=\underline{u}
\end{aligned}
$$

