7.3

 S^{\perp} is the set of vectors that are orthogonal to every vector in S

$$S^{\square} = \{ v : v \cdot u = 0, \forall u \in S \}$$

M

Jnique

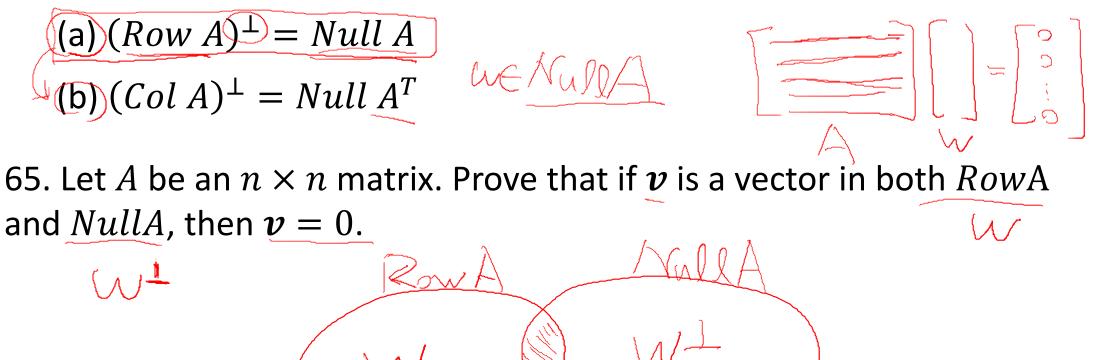
$$u = \underbrace{c_1w_1 + c_2w_2 + \dots + c_kw_k}_{+b_1z_1 + b_2z_2 + \dots + b_{n-k}z_{n-k}} \xrightarrow{v}$$
For any subspace W of R^D dimW + dimW[⊥] = n
Basis: { w_1, w_2, \dots, w_k } Basis: { z_1, z_2, \dots, z_{n-k} }
Basis for R^D
For every vector u,
 $u = w + z$ (unique)
 w^{\bot} w^{\bot} w^{U} w w

58. Let W be a subspace of \mathbb{R}^n , and let \mathbb{B}_1 and \mathbb{B}_2 be bases for W and \mathbb{W}^{\perp} , respectively.

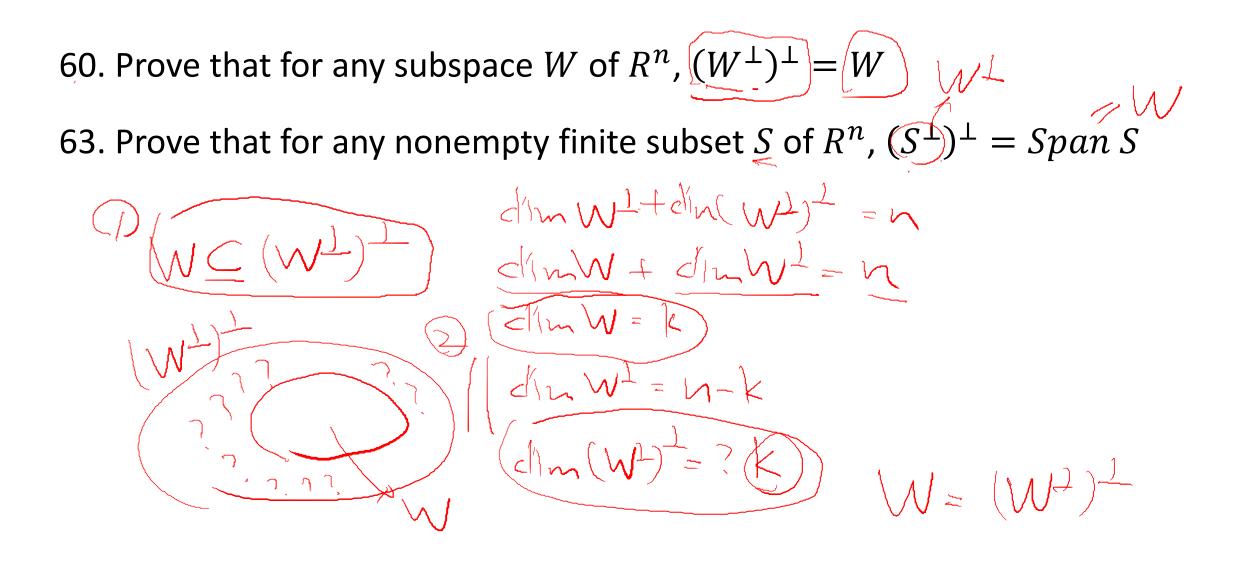
(a) $B_1 \cup B_2$ is a basis for \mathbb{R}^n

(b) $dimW + dimW^{\perp} = n$

4-2:77 Let V and W be nonzero subspaces of \mathbb{R}^n such that each vector \mathbf{u} in \mathbb{R}^n can be uniquely expressed in the form $\mathbf{u} = \mathbf{v} + \mathbf{w}$ for some \mathbf{v} in V and some \mathbf{w} in W. $\mathbf{v} = \mathbf{w}^\perp$ (a) Prove that $\mathbf{0}$ is the only vector in both \mathbf{v} and W. (b) Prove that $\dim \mathbf{v} + \dim W = n$ 61. Prove the following statements for any matrix *A*:



57. Let S be a nonempty finite subset of \mathbb{R}^n , and suppose that W = Span S. Prove that $W^{\perp} = S^{\perp}$ $M \in S \xrightarrow{L} \{X_1, X_2 \cdots X_K\}$ SCIN => for all XGW, X.V=0 => for all XES, X.N=0 => forall x ES, x. v = 0 $W = C_1 X_1 + (2X_2 + - - C_k X_k)$ W-V = C_1 (X_1 · v) + - - - + (k (X_k · v)) = 0 for all wEW, w. u=0 $\Rightarrow v \in \zeta^{\perp}$ MENNT



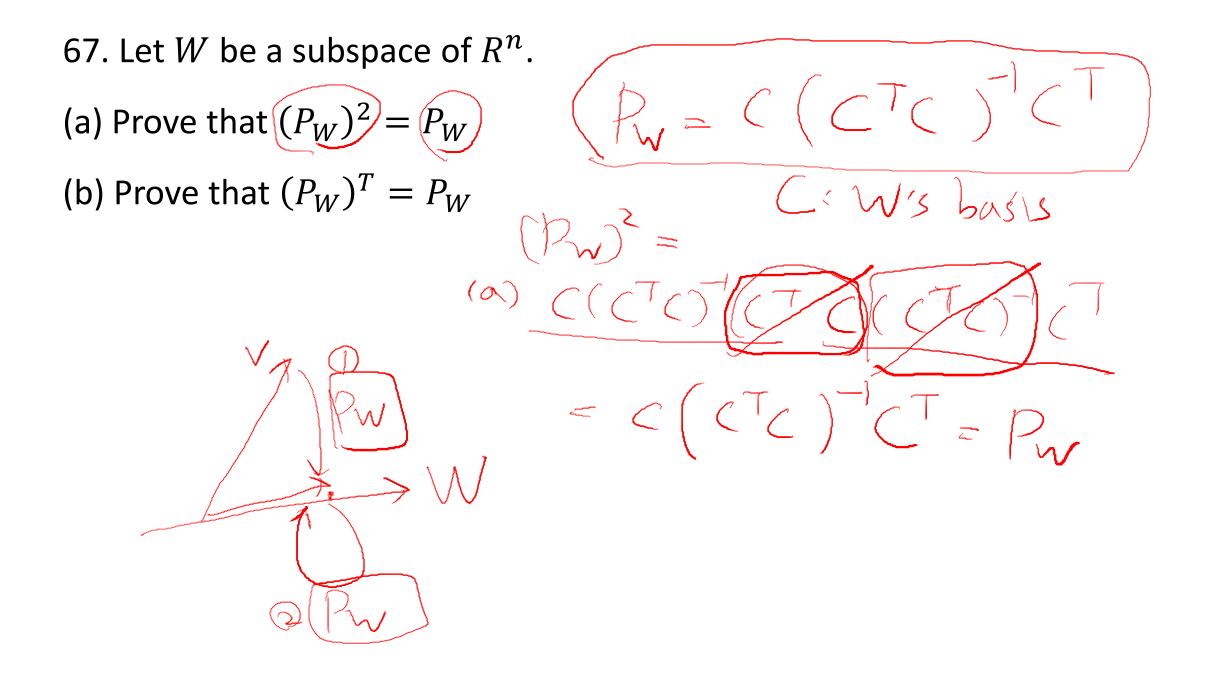
57. Let S be a nonempty finite subset of \mathbb{R}^n , and suppose that W = Span S. Prove that $W^{\perp} \neq S^{\perp}$. 64. Use the fact the $(Row A)^{\perp} = Null A$ for any matrix A to give another proof that $dimW + dimW^{\perp} = n$ for any subspace W of \mathbb{R}^{n} .

Hint: Let <u>A</u> be a $k \times n$ matrix whose rows constitute a basis for W.

 $W = R_{\Omega M} \Delta$

= N

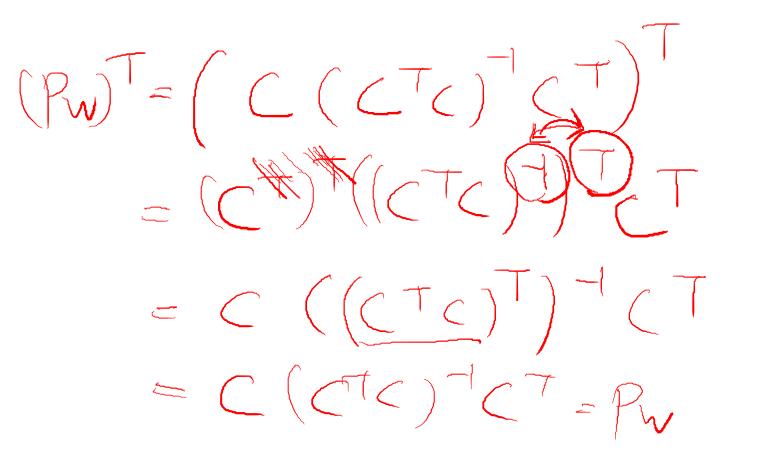
. orthogonal ind. 59. Suppose that $\{v_1, v_2, \dots, v_n\}$ is an orthogonal basis for \mathbb{R}^n . For any k, where $1 \le k < n$, define $W = Span\{v_1, v_2, \dots, v_k\}$. Prove that $\{v_{k+1}, v_{k+2}, \dots, v_n\}$ is an orthogonal basis for W^{\perp} Orthogohal. climW + climW = n $\cup \subset W^{\perp}$ (0) \overline{O} U is ind. (V) $\int G no. of V (n-k)$ $= d m W^{2} (n-k)$ Y:w, all we W $W = C_1 V_1 + C_2 V_2 + \cdots + C_{lc} V_{lc}$

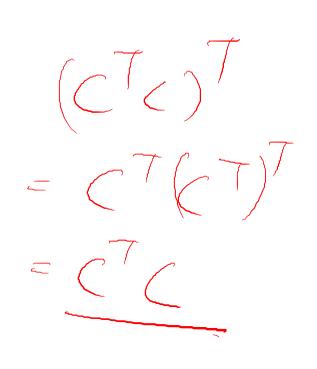


67. Let W be a subspace of \mathbb{R}^n .

(a) Prove that $(P_W)^2 = P_W$ (b) Prove that $(P_W)^T = P_W$

$$P_{\mathbf{W}} = C\left(C^{T}c\right)^{-1}c^{T}$$





72. Let W be a subspace of \mathbb{R}^n . Prove that $P_W P_{W^{\perp}} = P_{W^{\perp}} P_W = O$

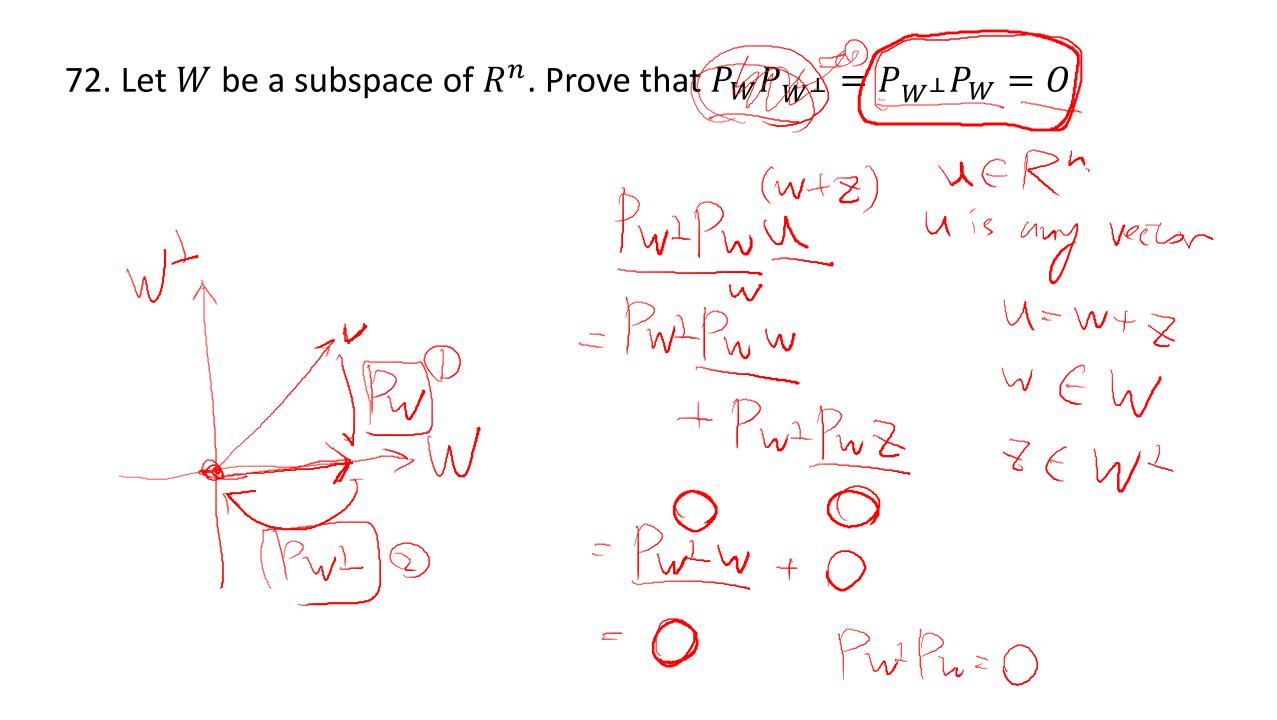
$$P_{W} = C(CTC)^{\dagger}CT \quad C \in W \text{'s basis}$$

$$P_{W}^{\perp} = B(BTB)^{\dagger}BT \quad B \in W^{\perp}\text{'s basis}$$

$$P_{W}^{\perp}P_{W} = O$$

$$= B(BTB)^{\dagger}BTC(CTC)^{\dagger}CT = O$$

$$W^{\perp}\text{'s basis} = D(111111)^{\dagger}W\text{'s basis}$$



73. Let W be a subspace of \mathbb{R}^n . Prove that $P_W + P_{W^{\perp}} = I_n$.

$$u = w + z$$

$$w \in W, z \in W^{\perp} \qquad (R_{W} + R_{W^{\perp}})(W + z)$$

$$= C(CTC)^{\perp}CT$$

$$= C(CTC)^{\perp}CT$$

$$= I$$

$$W + Z = M$$

$$= I$$