Orthogonal Matrices \& Symmetric Matrices Hung-yi Lee

Outline

Orthogonal Matrices

- Reference: Chapter 7.5

Symmetric Matrices

- Reference: Chapter 7.6

Orthogonal Matrix

- An nxn matrix Q is called an orthogonal matrix if the columns of Q are orthonormal.
- Orthogonal operator: standard matrix is an orthogonal matrix.

Norm-preserving

- A linear operator is norm-preserving if

$$
\|T(u)\|=\|u\| \quad \text { For all } u
$$

Example: linear operator T on R^{2} that rotates a vector by θ.
\Rightarrow Is T norm-preserving?

$$
A_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Example: linear operator T is reflection \Rightarrow Is T norm-preserving?

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Norm-preserving

- A linear operator is norm-preserving if

$$
\|T(u)\|=\|u\| \quad \text { For all } u
$$

Example: linear operator T is projection
\Rightarrow Is T norm-preserving?

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Example: linear operator U on R^{n} that has an eigenvalue $\lambda \neq \pm 1$.

Norm－preserving

－Necessary conditions：

Norm－ preserving

Orthogonal Matrix

？？？
Linear operator Q is norm－preserving
$\left\|\mathbf{q}_{j}\right\|=1$

$$
\left\|\mathbf{q}_{j}\right\|=\left\|Q \mathbf{e}_{j}\right\|=\left\|\mathbf{e}_{j}\right\|
$$

\mathbf{q}_{i} and \mathbf{q}_{j} are orthogonal

䍐式定理

$\left\|\mathbf{q}_{i}+\mathbf{q}_{j}\right\|^{2}=\left\|Q \mathbf{e}_{i}+Q \mathbf{e}_{j}\right\|^{2}=\left\|Q\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right\|^{2}=\left\|\mathbf{e}_{i}+\mathbf{e}_{j}\right\|^{2}=2=\left\|\mathbf{q}_{i}\right\|^{2}+\left\|\mathbf{q}_{j}\right\|^{2}$

Orthogonal Matrix

- Q is an orthogonal matrix
- $Q Q^{T}=I_{n}$
- Q is invertible, and $Q^{-1}=Q^{T} \quad$ Simple inverse
- $Q u \cdot Q v=u \cdot v$ for any $u / a n d v \quad Q$ preserves dot projects
- $\|Q u\|=\|u\|$ for any u Q preserves norms

Norm-
 preserving

Orthogonal Matrix

Orthogonal Matrix

1
Q is an orthogonal matrix

- $Q^{T} Q=I_{n}$

2. Q is invertible, and $Q^{-1}=Q^{T}$

- $Q u \cdot Q v=u \cdot v$ for any u and v $Q^{T} Q$
(3) $\|Q u\|=\|u\|$ for any u

2) $Q u \cdot Q v=(Q u)^{T} Q v=u^{T} Q^{T} Q v=u^{T} I v=u^{T} v=u \cdot v$
3) $Q u \cdot Q v=u \cdot v \Rightarrow Q u \cdot Q u=u \cdot u$
$\Rightarrow\|Q u\|^{2}=\|u\|^{2} \Rightarrow\|Q u\|=\|u\|$

Orthogonal Matrix

- Let P and Q be $\mathrm{n} \times \mathrm{n}$ orthogonal matrices
- $\operatorname{det} Q= \pm 1$
- $P Q$ is an orthogonal matrix

Check by $(P Q)^{-1}=(P Q)^{T}$

- Q^{-1} is an orthogonal matrix Check by $\left(Q^{-1}\right)^{-1}=\left(Q^{-1}\right)^{T}$ - " Q^{T} is an orthogonal matrix

Proof

(C) $\left(Q^{-1}\right)^{-1}=\left(Q^{\top}\right)^{-1}=\left(Q^{-1}\right)^{T}$

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]
$$

Orthogonal Operator

- Applying the properties of orthogonal matrices on orthogonal operators
- T is an orthogonal operator
- $T(u) \cdot T(v)=u \cdot v$ for all u and v
- $\|T(u)\|=\|u\|$ for all u

Preserves norms

- T and U are orthogonal operators, then $T U$ and T^{-1} are orthogonal operators.

Example: Find an orthogonal operator T on R^{3} such that

$$
T\left(\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Norm-preserving
$v=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right] \quad A v=e_{2} \quad v=A^{-1} e_{2} \quad \begin{gathered}\text { Find } A^{-1} \text { first } \\ \text { Because } A^{-1}=A^{T}\end{gathered}$

$$
\begin{array}{cc}
\\
A=\left(A^{-1}\right)^{T}
\end{array}
$$

$1 / \sqrt{2} x_{1}+0 x_{2}+1 / \sqrt{2} x_{3}=0$

Conclusion

- Orthogonal Matrix (Operator)
- Columns and rows are orthogonal unit vectors
- Preserving norms, dot products
- Its inverse is equal its transpose

Outline

Orthogonal Matrices

- Reference: Chapter 7.5

Symmetric Matrices

- Reference: Chapter 7.6

Eigenvalues are real

- The eigenvalues for symmetric matrices are always real.

Consider 2×2 symmetric matrices

$$
A=A^{T}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \in R^{2 \times 2}
$$

How about more general cases?

$$
\operatorname{det}\left(A-t I_{2}\right)=t^{2}-(a+c) t+a c-b^{2}
$$

Since $(a+c)^{2}-4\left(a c-b^{2}\right)=(a-c)^{2}+4 b^{2} \geq 0$
The symmetric matrices always have real eigenvalues.

Eigenvalues are real

A symmetric matrix A has an eigenvalue $\lambda \quad \lambda=a+b i$

$$
\begin{aligned}
& A v=\lambda v \rightarrow \overline{A v}=\overline{\lambda v} \rightarrow \bar{A} \bar{v}=\bar{\lambda} \bar{v} \xrightarrow[\bar{A}=A]{ } A \bar{v}=\bar{\lambda} \bar{v} \\
& (\bar{v})^{\mathrm{T}} A v \quad v=\left[\begin{array}{c}
(\bar{v})^{\mathrm{T}} \lambda v=\lambda(\bar{v})^{\mathrm{T}} v b_{1} i \\
a_{2}+b_{2} i \\
\vdots
\end{array}\right] \neq \mathbf{0} \\
& (\bar{v})^{\mathrm{T}} A^{\mathrm{T}} v=(A \bar{v})^{\mathrm{T}} v \\
& \bar{v}=\left[\begin{array}{c}
a_{1}-b_{1} i \\
a_{2}-b_{2} i \\
\vdots
\end{array}\right] \\
& (\bar{v})^{\mathrm{T}} v=? \quad>0 \longrightarrow \lambda=\bar{\lambda} \longrightarrow b=0 \\
& =\left(a_{1}\right)^{2}+\left(b_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(b_{2}\right)^{2}+\cdots
\end{aligned}
$$

Orthogonal Eigenvectors

$$
\operatorname{det}\left(A-t I_{n}\right) \quad \text { Factorization }
$$

A is symmetric

$=\left(t-\lambda_{1}\right) \underline{\underline{m_{1}}}\left(t-\lambda_{2}\right) \underline{\underline{m_{2}}} \ldots\left(t-\lambda_{k}\right)^{\underline{m_{k}}}(\ldots \ldots)$
Eigenvalue:

Orthogonal Eigenvectors

- A is symmetric.
- If u and v are eigenvectors corresponding to eigenvalues λ and $\mu(\lambda \neq \mu)$
u and v are orthogonal.

$=\mathbf{u} \cdot \mu \mathbf{v}$

Diagonalization

$$
\mathrm{A}=P \mathrm{DP}^{T}
$$

: simple

$$
\mathrm{P}^{T} \mathrm{AP}=\mathrm{D}
$$

P is an orthogonal matrix
D is a diagonal matrix

$\mathrm{A}=P \mathrm{DP}^{-1} \quad$ Diagonalization

P consists of eigenvectors, D are eigenvalues

Diagonalization

A is
 symmetric

- A has eigenvalue $\lambda \quad A \boldsymbol{u}_{1}=\lambda \boldsymbol{u}_{1} \quad \boldsymbol{u}_{1}$ is unit vector
- Find an orthonormal basis $\underset{\text { eigenvector }}{\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{\downarrow}\right\}=B}$ don't care by the Extension Theorem and Gram-Schmidt Process

$$
\begin{array}{rlr}
B^{T} A B=? & \left(B^{T} A B\right)^{T}=B^{T} A^{T}\left(B^{T}\right)^{T}=B^{T} A B & \text { symmetric } \\
B^{T} A B \boldsymbol{e}_{1}= & B^{T} A \boldsymbol{u}_{1}=B^{T} \lambda \boldsymbol{u}_{1}=\lambda B^{T} \boldsymbol{u}_{1} & \lambda \\
\mathbf{0} \\
= & \lambda\left[\begin{array}{c}
\boldsymbol{u}_{1}{ }^{T} \\
\boldsymbol{u}_{2}{ }^{T} \\
\vdots
\end{array}\right] \boldsymbol{u}_{1}=\lambda\left[\begin{array}{c}
1 \\
0 \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
0 \\
\vdots
\end{array}\right] & \mathbf{0} \\
A^{\prime}
\end{array}
$$

Diagonalization

$\begin{gathered}\text { A is } \\ \text { symmetric }\end{gathered} \Rightarrow \mathrm{P}^{T} \mathrm{AP}=\mathrm{D}$

 $A: n \times n$

Diagonalization

A is symmetric $\Rightarrow \mathrm{P}^{T} \mathrm{~A} P=\mathrm{D}$

 $A: n \times n$

$$
B^{\prime T} A^{\prime} B^{\prime}=
$$

Diagonalization

- Example

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right] \quad \mathrm{A}=\mathrm{PDP}^{-1}
$$

$\mathrm{A}=\mathrm{PDP}^{T}$

$\mathrm{P}^{T} \mathrm{~A} P=\mathrm{D}$
A has eigenvalues $\lambda_{1}=6$ and $\lambda_{2}=1$,
with corresponding eigenspaces $\mathrm{E}_{1}=\operatorname{Span}\left\{\left[\begin{array}{ll}-1 & 2\end{array}\right]^{\top}\right\}$ and $\mathrm{E}_{2}=\operatorname{Span}\left\{\left[\begin{array}{ll}2 & 1\end{array}\right]^{\top}\right\}$
$\Rightarrow B_{1}=\left\{\left[\begin{array}{ll}-1 & 2\end{array}\right]^{\top} / \sqrt{ } 5\right\}$ and $B_{2}=\left\{\left[\begin{array}{ll}2 & 1\end{array}\right]^{\top} / \sqrt{ } 5\right\}$
orthogonal

$$
P=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right] .
$$

Example of Diagonalization of Symmetric Matrix

$$
A=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right] \quad \mathrm{A}=\mathrm{PDP}^{-1} \xrightarrow[\mathrm{P} \text { is an orthogonal matrix }]{\mathrm{A}=\mathrm{PDP}^{T}}
$$

$$
\lambda_{1}=2
$$

$$
\lambda_{2}=8
$$

Not orthogonal
Gram-

Eigenspace: $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}_{\text {normalization }}^{\sim} \operatorname{Span}\left\{\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]\right\}$

$$
P=\left[\begin{array}{ccc}
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right] \quad D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

Diagonalization

P is an orthogonal matrix

$$
\mathrm{P}^{T} \mathrm{~A} P=\mathrm{D}
$$

$$
\mathrm{A}=P \mathrm{DP}^{T}
$$

P consists of eigenvectors, D are eigenvalues
Finding an orthonormal basis consisting of eigenvectors of A

Diagonalization of Symmetric Matrix $\begin{gathered}u=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{l} v_{k} \\ u \cdot v_{1} \\ u \cdot v_{2} \\ u \cdot v_{k}\end{gathered}$
Orthonormal basis

Spectral Decomposition

Orthonormal basis

$$
\begin{aligned}
A & =P D P^{T} \quad \text { Let } P=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}
\end{array}\right] \text { and } D=\operatorname{diag}\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n}
\end{array}\right] \\
& =P\left[\begin{array}{llll}
\lambda_{1} \mathbf{e}_{1} & \lambda_{2} \mathbf{e}_{2} & \cdots & \lambda_{n} \mathbf{e}_{n}
\end{array}\right] P^{T} \\
& =\left[\begin{array}{lllll}
\lambda_{1} P \mathbf{e}_{1} & \lambda_{2} P \mathbf{e}_{2} & \cdots & \lambda_{n} P \mathbf{e}_{n}
\end{array}\right] P^{T}
\end{aligned}
$$

$$
=\left[\begin{array}{lllll}
\lambda_{1} \mathbf{u}_{1} & \lambda_{2} \mathbf{u}_{2} & \cdots & \lambda_{n} \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T} \\
\vdots \\
\mathbf{u}_{n}^{T}
\end{array}\right] \stackrel{\square}{\mathrm{nx1} 1 \mathrm{xn}}
$$

$$
=\lambda_{1} \mathrm{P}_{1}+\lambda_{2} \mathrm{P}_{2}+\cdots+\lambda_{n} \mathrm{P}_{n} \quad P_{i} \text { are symmetric }
$$

Spectral Decomposition

Orthonormal basis
$A=P D P^{T}$ Let $P=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}\end{array}\right]$ and $D=\operatorname{diag}\left[\begin{array}{llll}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n}\end{array}\right]$.
$=\lambda_{1} \mathrm{P}_{1}+\lambda_{2} \mathrm{P}_{2}+\cdots+\lambda_{n} \mathrm{P}_{n}$
$\operatorname{rank} P_{i}=\operatorname{rank} \mathbf{u}_{i} \mathbf{u}_{i}^{T}=1$.
$P_{i} P_{i}=\mathbf{u}_{i} \underline{\mathbf{u}_{i}^{T}} \mathbf{u}_{i} \mathbf{u}_{i}^{T}=\mathbf{u}_{i} \mathbf{u}_{i}^{T}$
$P_{i} P_{j}=\mathbf{u}_{i} \mathbf{u}_{i}^{T} \mathbf{u}_{j} \mathbf{u}_{j}^{T}=O$
$P_{i} \mathbf{u}_{i}$
$=\boldsymbol{u}_{i}$
$P_{i} \mathbf{u}_{j}$
$=0$

Spectral Decomposition

- Example

$$
A=\left[\begin{array}{cc}
3 & -4 \\
-4 & -3
\end{array}\right] \quad \text { Find spectrum decomposition. }
$$

Eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-5 . \quad P_{1}=u_{1} u_{1}^{T}$

An orthonormal basis consisting of eigenvectors of A is

$$
\begin{array}{rl}
B=\left\{\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]\right\} & P_{2}=u_{2} u_{2}^{T} \\
u_{1} u_{2} & A=\lambda_{1} P_{1}+\lambda_{2} P_{2}
\end{array}
$$

Conclusion

- Any symmetric matrix
- has only real eigenvalues
- has orthogonal eigenvectors.
- is always diagonalizable

Acknowledgement

－感謝黃彥鈞同學發現投影片上的錯字

